
WARDuino
A Dynamic WebAssembly Virtual Machine for Programming Microcontrollers

Robbert Gurdeep Singh
Ghent University
Ghent, Belgium

Robbert.GurdeepSingh@ugent.be

Christophe Scholliers
Ghent University
Ghent, Belgium

Christophe.Scholliers@ugent.be

Abstract
It is extremely hard and time-consuming to make correct
and efficient programs for microcontrollers. Usually micro-
controllers are programmed in a low level programming
language such as C which makes them hard to debug and
maintain. To raise the abstraction level, many high level
programming languages have provided support for program-
ming microcontrollers. Examples include Python, Lua, C#
and JavaScript. Using these languages has the downside that
they are orders of magnitude slower than the low-level lan-
guages. Moreover, they often provide no remote debugging
support.
In this paper we investigate the feasibility of using Web-

Assembly to program Arduino compatible microcontrollers.
Our experiments lead to extending the standardWebAssembly
VM with: 1) safe live code updates for functions and data
2) remote debugging support at the VM level 3) program-
mer configurable (Arduino) modules in order to keep the
virtual machine’s footprint as small as possible. The resulting
WARDuino VM enables the programmer to have better per-
formance than an interpreted approachwhile simultaneously
increasing the ease of development.

To evaluate our approach, we implemented a simple break-
out game and conducted micro benchmarks which show that
the VM runs approximately 5 times faster than Espruino, a
popular JavaScript interpreter for the ESP32 microcontroller.

CCS Concepts • Software and its engineering → Vir-
tual machines; Software testing and debugging.

Keywords WebAssembly, Virtual Machine, Arduino, Live
Code Updates
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1 Introduction
Microcontrollers can be programmed with low-level lan-
guages such as C [9] and C++ [16] but there are also vari-
ous high-level programming languages available. Low-level
programming languages have the advantages that they can
provide the best speed for the devices. The disadvantages of
low-level programming languages are: 1) Finding and debug-
ging memory bugs is tedious without a (expensive) hardware
debugger. 2) Due to the tight coupling of the programming
model and microcontroller porting a program form one mi-
crocontroller to another is not straightforward. 3) Uploading
a program to the chip (flashing) is slow and tedious, a small
change in the program requires the whole program to be
re-uploaded which can take up to a minute.

Programming microcontrollers with a high-level language
has a lot of benefits because the available abstractions hide
the complexity of programming microcontrollers. The down-
sides of these languages are that: 1) they tend to be a lot
slower, 2) many of the them do not provide good remote
debugging support, 3) for performance reasons access to
the peripheral devices is often baked into the programming
language which means that the language has limited use if
your peripheral device is not supported by the language.
In this paper we investigate the use of a memory-safe

virtual machine employing WebAssembly (WA) as a mid-
dle ground between high-level and low-level programming
languages. The advantages of the virtual machine is that it
provides safety and exposes the underlying hardware uni-
formly so that switching microcontroller does not require a
rewrite of the programs.

In this work, we extend WebAssembly with safe live code
updates and remote debugging. Moreover, we use the exist-
ing functionality provided by WA to define modules which
exposes the underlying functionality provided by the ESP32
chip. Micro benchmarks show that the use of the VM pro-
vides good speedups compared to a interpreter based ap-
proach.

https://doi.org/10.1145/3357390.3361029
https://doi.org/10.1145/3357390.3361029
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2 The Need for Something New
In order to demonstrate the need to use of WebAssembly
on microcontrollers we note that the following hurdles exist
when programming these devices with a low-level language:

1. The development cycle is very long, uploading a new
version of the program takes the same (long) time no
matter how small the change.

2. Debugging is done by using print statements.
3. The microcontroller can crash leaving no clear infor-

mation about where the program went wrong.
Some of these hurdles can be mitigated by using one of the

high-level programming languages available for program-
ming microcontrollers. This is not a full solution, as there is
now a new set of problems:

1. The debugging support is often still done by using
print statements.

2. The runtime of the language takes a lot of space on
the chip no matter how few functionalities are used.

3. A high-level language is significantly slower than a
low level programming language, therefore writing
device drivers in the high level programming language
is futile.

In this paper we investigate whether a WebAssembly vir-
tual machine can offer the programmer the following bene-
fits:

1. Support a wide range of programming languages.
2. Allow fast and safe live code updates.
3. Provide remotely debugging facilities.
4. Enable configurable runtime where the programmer

only pays for the used functionality.
5. Good performance.

3 WARDuino Overview
In this section we give an overview of our virtual machine
based approach towards programming microcontrollers. Our
virtual machine called WARDuino builds upon two major
pillars Arduino and WebAssembly. We first give a short
overview of both. After that, we briefly describe our ex-
tensions to WebAssembly that aim to increase its usability
as a target platform for programming microcontrollers.

3.1 WebAssembly
WebAssembly (WA) is a recently proposed low-level code
platform initially designed for the web [5]. Its main goals
are to provide safety, portability, compact code represen-
tation and fast code execution. The difficulty in its design
was to offer all these properties at once. While the primary
motivation of WA is to provide a unifying platform for the
Web, the specification hints that WA can be used as a virtual
machine for wide range of platforms. Moreover, the specifi-
cation has made a point out of not depending in any way on
the JavaScript environment found on the web. Interestingly

the design decisions made for WA are also very desirable
when programming microcontrollers.

While the design decisions for WAmake a very good start-
ing point for programming microcontrollers there are still
a number of desirable properties which are not directly ad-
dressed. First, the standard does not specify anything about
how WA may be debugged. Second, there is no specification
of howWA programs can be updated safely. Finally, the stan-
dard does not provide primitives to access the underlying
hardware.

3.2 Arduino
Arduino [1] is an open-source electronics platform for a wide
range of microcontrollers. A thin layer on top of C and a vivid
community makes starting to program microcontrollers a
lot less painful. The Arduino platform does an excellent job
in defining uniform libraries. For example, getting the iconic
blinking LED example working on your microcontroller is
the same for all supported microcontrollers. The reason is
that all microcontroller boards implement a core set of li-
braries to access the input-output pins, and they all define a
number of constants for example LED_PIN.
We build on the success of the Arduino libraries by ex-

posing them as modules in WA. By building upon the Ar-
duino libraries we obtain the same kind of reusability for
porting programs written in WA to different kinds of micro-
controllers.

3.3 Architectural Overview
While the WebAssembly layer allows programmers to ex-
ecute programs that compile to WA, it does not allow the
programmer to easily update the program or access the un-
derlying hardware of the microcontroller. Our extensions
to WA aim to resolve this. We have two extensions one for
updating live functions and data and a second to allow the
virtual machine to be debugged remotely. Finally, we also
defined a set of modules: GPIO, SPI, AD/DC, and PWM built
on top of Arduino. Each of these modules provides the pro-
grammer with support for accessing the low level hardware
modules of the microcontroller. These modules live in the
VM, between the WA and chip layer.

To allow debugging, we allow receiving debug messages
trough a wide variety of channels1. With these messages, the
programmer can alter the running state of the VM. We allow
“𝑝𝑎𝑢𝑠𝑒” , “𝑝𝑙𝑎𝑦” , “𝑠𝑡𝑒𝑝” , “𝑑𝑢𝑚𝑝” , “𝑏𝑟𝑒𝑎𝑘+ 𝑖𝑑” and “𝑏𝑟𝑒𝑎𝑘− 𝑖𝑑”
messages. The first 3 messages respectively pause the ex-
ecution of the VM, continue it and allow stepping to the
next WA instruction. The 𝑑𝑢𝑚𝑝 message dumps the state
of the VM. This includes instruction pointer, the callstack,
the locals and so on. Finally, the “𝑏𝑟𝑒𝑎𝑘+ 𝑖𝑑” (“𝑏𝑟𝑒𝑎𝑘− 𝑖𝑑”)
message adds (removes) a breakpoint by adding (removing)

1Any channel that we can place interrupts on: Serial bus, Wi-Fi, . . .
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it to set of pending breakpoints. If a breakpoint is hit, WAR-
Duino pauses. For live code updates developers can send an
“𝑢𝑝𝑙𝑜𝑎𝑑”, “𝑢𝑝𝑑𝑎𝑡𝑒𝑓 ” or “𝑢𝑝𝑑𝑎𝑡𝑒𝑙 ” message with new data as
payload. The provided data will be used to respectively up-
date the entire WebAssembly state (restart with new code),
do a live update of a function or update a local. The full
formal semantics can be found in appendix A.

4 WARDuino Modules Extensions
The WebAssembly standard allows the definition of custom
modules provided by the runtime. In web browsers these
modules provide interoperability with JavaScript. Here we
make use of the same mechanism to provide access to the
hardware functionalities of the microcontroller.

4.1 Digital Input-Output
A first module exposes the hardware pins of the microcon-
troller. Each pin of the microcontroller has multiple func-
tionalities or modes, it is therefore important to make sure
that the mode of the pin is set correctly. Once the pin mode
has been set, it can be used for reading or writing.

In a microcontroller each pin is connected through a cer-
tain port, as popularized by Arduino the division in ports
and pins is abstracted away through a simple API. This API
allows to set the pin mode, read the pin or write a (digital)
value to the pin. In WARDuino we defined a naive imple-
mentation of these functions in a module. The signatures of
the functions in the WARDuino IO module are:

𝑝𝑖𝑛𝑀𝑜𝑑𝑒 (𝑝𝑖𝑛,𝑚𝑜𝑑𝑒) 𝑖𝑛𝑡 × 𝑖𝑛𝑡 → ()
𝑑𝑖𝑔𝑖𝑡𝑎𝑙𝑊𝑟𝑖𝑡𝑒 (𝑝𝑖𝑛, 𝑣𝑎𝑙𝑢𝑒) 𝑖𝑛𝑡 × 𝑖𝑛𝑡 → ()
𝑑𝑖𝑔𝑖𝑡𝑎𝑙𝑅𝑒𝑎𝑑 (𝑝𝑖𝑛) 𝑖𝑛𝑡 → 𝑖𝑛𝑡

An example WARDuino program which blinks a LED is
shown in figure 1. This program is defined as a module which
specifies a number of function declarations, defines which
functions are imported and finally defines a function $blink-
-arduino. This program defines two function types: the first
called $void->void and a second called $int->int->void.
Both are function types, the first one specifies that it takes
an empty parameter list and returns an empty result list.
The second one takes two parameters both of type 𝑖32 and
has an empty return list. Subsequently, two functions are im-
ported into the module, pin_mode and digital_write, both
functions are imported form the IO module. This module is
implemented inside of the WARDuino VM.
This piece of code is verified in two ways by the Web-

Assembly tools. First, the module is type checked and any
misuse of the imported functions will be signaled by the type-
checker. Second, once this module is loaded onto the micro-
controller the WARDuino virtual machine verifies whether
the type declaration of the imported functions corresponds
with the known types. Those two checks protect the pro-
grammer from executing ill-formed programs.

1 (module

2 (; Type declarations ;)

3 (type $void ->void (func (param) (result)))

4 (type $int ->int ->void

5 (func (param i32) (param i32) (result)))

6 (; Imports ;)

7 (import "IO" "pin_mode"

8 (func $pin_mode (type $int ->int ->void)))

9 (import "IO" "digital_write"

10 (func $dig_write (type $int ->int ->void)))

11 (; blink function ;)

12 (func $blink_arduino (type $void ->void)

13 (call $pin_mode (i32.const 16) (i32.const 1))

14 (loop

15 (call $dig_write (i32.const 16) (i32.const 0))

16 (call $wait)

17 (call $dig_write (i32.const 16) (i32.const 1))

18 (br 0))))

Figure 1. WARDuino Blink Example

4.2 Pulse Width Modulation
The pulse width modulation (PWM) module of a microcon-
troller allows the programmer to send out a square wave
to one of the output pins without having to write a busy
loop. The PWM module is often used to simulate analog
output trough digital means. The prototypical example is
to dim a LED light. Other uses of the PWM module include
generating sounds.

To control the PWMmodule the programmer has one API
function, setPinFrequency, shown below this paragraph.
This function changes the default frequency given a certain
pin. For example when the default frequency on a pin D1 is
31250 Hz a call to (setPinFrequency D1 8) will change
the frequency on the pin to 31250/8 Hz.

setPinFrequency(pin, divider) 𝑖𝑛𝑡 × 𝑖𝑛𝑡 → ()

4.3 Serial Peripheral Interface
The serial peripheral interface is a bus protocol which is
commonly used to communicate between a microcontroller
and small peripheral devices such as sensors, SD-cards, dis-
plays, and shift registers. The bus consists of three data lines
a data line to indicate the clock SCK, a data line for master
input slave out communication MISO, and a data line for
master out slave in communication MOSI. Next to the data
communication lines there is also an optional chip select line
(per peripheral device). A single SPI bus can communicate
with multiple peripheral devices at once. In order to indicate
to which device the master wants to communicate it first
needs to make one of the chip selection lines high.

SPI communication can be implemented in hardware or in
software. When making use of the hardware implementation
the programmermust use specific pins of the microcontroller.
In software the programmer is free to use any of the available
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input-output pins. Software implementations are however,
significantly slower than making use of the hardware imple-
mentation.
The functions governing access to the hardware SPI bus

are shown in figure 2. The functions spiClockDivider, spi-
BitOrder, spiDataMode are configuration functions to spec-
ify how data will be transferred. Before actually using the SPI
bus the programmer first needs to call the spiBegin which
initializes the SPI module. Once opened, the programmer
can start transferring data from the chip to the peripheral
device by using one of the transfer functions. We included
two kinds of transfer functions one for 8bit transfers and
one for 16bit transfers. For both variants we also included
a bulk mode which sends the same data a specific kind of
times. The inclusion of the bulk operations improves the
performance of a display driver greatly.

𝑠𝑝𝑖𝐵𝑖𝑡𝑂𝑟𝑑𝑒𝑟 (𝑏𝑖𝑡𝑜𝑟𝑑𝑒𝑟 ) 𝑖𝑛𝑡 → ()
𝑠𝑝𝑖𝐶𝑙𝑜𝑐𝑘𝐷𝑖𝑣𝑖𝑑𝑒𝑟 (𝑑𝑖𝑣𝑖𝑑𝑒𝑟 ) 𝑖𝑛𝑡 → ()
𝑠𝑝𝑖𝐷𝑎𝑡𝑎𝑀𝑜𝑑𝑒 (𝑚𝑜𝑑𝑒) 𝑖𝑛𝑡 → ()
𝑠𝑝𝑖𝐵𝑒𝑔𝑖𝑛() () → ()
𝑠𝑝𝑖𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟8(𝑑𝑎𝑡𝑎) 𝑖𝑛𝑡 → ()
𝑠𝑝𝑖𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟16(𝑑𝑎𝑡𝑎) 𝑖𝑛𝑡 → ()
𝑠𝑝𝑖𝐵𝑢𝑙𝑘𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟8(𝑐𝑜𝑢𝑛𝑡, 𝑑𝑎𝑡𝑎) 𝑖𝑛𝑡 × 𝑖𝑛𝑡 → ()
𝑠𝑝𝑖𝐵𝑢𝑙𝑘𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟16(𝑐𝑜𝑢𝑛𝑡, 𝑑𝑎𝑡𝑎) 𝑖𝑛𝑡 × 𝑖𝑛𝑡 → ()
𝑠𝑝𝑖𝐸𝑛𝑑 () () → ()

Figure 2. Signature of the WARDuino SPI module

5 WARDuino Implementation
The WARDuino VM is written in C++ as an extension of
an open source project by Joel Martin 2. It is a stack based
virtual machine which implements most of theWebAssembly
standard. The major changes we had to make to the VM
is to: 1) introduce an interrupt driven messaging system
for listening to debugging messages 2) implement native
modules for accessing the hardware modules 3) rewrite the
memory layout to allow for live code updates.

5.1 Implementation
The WARDuino VM is a stack based virtual machine. It pro-
cesses the code instruction by instruction while keeping
track of a program counter. The VM also has run state, “play”,
“pause” or “step”, which is checked before processing each
instruction. An interrupt driven queuing system handles
incoming messages from the remote debugger.

5.1.1 Debugging Queue
Debug messages can be sent toWARDuino by various means.
Such a message always starts with a byte identifying the type

2https://github.com/kanaka/wac

of debugging message, and it ends with another specific byte
sequence.
When a debug message is sent to the microcontroller, it

is caught by an interrupt handler. This handler reads the
available data and passes it on to the VM. The VM in turn
waits for a full debugging package to arrive. Once a package
is complete, it is placed in a queue for final processing.
The debugging queue is checked before each instruction

executed by the virtual machine. If a message is present in
the queue, appropriate action is taken. The 𝑝𝑙𝑎𝑦, 𝑝𝑎𝑢𝑠𝑒 and
𝑠𝑡𝑒𝑝 messages respectively run, pause or step the currently
executing program by setting the run state appropriately.
When a 𝑑𝑢𝑚𝑝 message is received, the run state is set

to pause and a JSON representation of the current state of
the VM is sent back to the user. The JSON object contains
the callstack, a list of functions, and the current instruction
pointer. An example output is shown in figure 9 of Appen-
dix B. In our implementation we also allow querying only
specific elements of the state, such as the local variables.

5.2 Breakpoints
The remote debugging messages 𝑏𝑟𝑒𝑎𝑘+ and 𝑏𝑟𝑒𝑎𝑘− carry
a pointer to the code a user wishes to pause execution at.
These breakpoints are stored in a set. The set is checked
before each instruction. When a breakpoint is hit, the run
state is set to pause, and an acknowledgment message is sent
to the remote debugger.

5.2.1 Native Modules
WA is a module based system. To transparently provide ac-
cess to the hardware we provide modules that can be in-
cluded in the WA program. The code that handles imports
can now handle certain “built-in” modules that provide a
set of functions to the programmer. These functions can be
implemented straightforwardly in C. To make the VM more
lightweight, these built-in modules can be turned on or off.
This way the developer only pays for the built-ins they use.

5.2.2 Live Code Updates
The remote debugging messages 𝑢𝑝𝑑𝑎𝑡𝑒𝑓 and 𝑢𝑝𝑑𝑎𝑡𝑒𝑙 con-
tain two things: the id of the function or local to update and
the new value. According to the semantics, the VM should
be in the pause state to process such as change. If the virtual
machine is not yet in the pause state, it is set to it and the
change is processed.

Updating a local simply updates the appropriate value on
the stack. Updating a function on the other hand is slightly
more elaborate. First, the bytecode of the function is parsed
and the appropriate structures are built. If the new function
has an identical type, the pointer in WARDuino’s function
table is replaced with a reference to the new code. Any run-
ning call of the existing function will continue to work. A
new call to a replaced function will use the updated code.
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5.3 Benchmarks
In order to get a preliminary idea of the performance of the
virtual machine we compare WARDuino with a JavaScript
based VM called Espruino3 [19]. We compare both the execu-
tion speed and the size of the programs for both WARDuino
and Espruino. In our measurements we do not take into ac-
count the uploading and initialization time of the virtual
machines. The measurements are performed on an ESP DE-
VKITV1. This board features a ESP-WROOM-32 chip that
operates at 240 MHZ, with 520KiB SRAM, integrated Wi-Fi,
dual-mode Bluetooth, UART, ETH, PWM, IR, Touch Sensors,
and a SPI interface.

5.3.1 Execution Speed
We start by giving an overview of the execution speed mea-
surements. Our benchmark consists of six computationally
intensive programs implemented in both JavaScript (for Es-
pruino) and WebAssembly (for WARDuino).

For each program we report the time that elapses between
starting and ending the execution of the program ten times.
The WebAssembly code was generated from C code with
Emscripten. To ensure an honest comparison this C code is
identical in structure to the JavaScript code except for the
addition of types. Additionally, we prohibited loop unrolling
and inlining of the benchmark functions.

The benchmarks results are shown in the top graph of fig-
ure 3. The blue bars indicate the execution time of Espruino,
the red bars shows the execution time for WARDuino, both
on a log scale. We see that WARDuino consistently outper-
forms Espruino by a factor of 5. Note that the difference is
even larger for the tak benchmark. This may be attributed
to the extreme amount of recursion the tak function ex-
hibits. Our suspicion seems to be confirmed by the (iterative)
fib benchmark which calculates Fibonacci numbers without
recusing. In this benchmark the performance difference is
indeed less pronounced as in the tak benchmark.

We also compared our results to a native C implementation
of the same code. Detailed results can be found inAppendix C.
Because the native implementation in C is not based on a
stack machine, it is much faster. To add two numbers for
example, no stack access is needed in native C. Since WA
is a stack machine, and our implementation does not yet
feature a JIT compiler, memory access is required to perform
all basic operations. WARDuino is about 465 times slower
than a native C equivalent, Espruino is 4663 times slower4.

5.3.2 Code Size
Another interesting metric is the size of the code to be up-
loaded to an instantiated VM. The second graph of figure 3
shows the size of the code for each of the benchmarks. For
WARDuino, in red, the size of theWebAssemby binary (wasm)

3Version 2v03: espruino_2v03_esp32.bin
4Geometric mean execution of time normalized to the native time.
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Figure 3. Execution times as multiples of the native C exe-
cution time (top) and bytecode sizes (bottom) of Espruino
programs (blue) compared to the same metric for the same
program implemented in WARDuino with Emscripten (red).

is shown. For Espruino the size of the JavaScript file is shown.
The wasm files are smaller because they are in a binary format.
The size of the JavaScript files could be decreased trough
a process called minimization, which makes the JavaScript
smaller and no longer readable for humans. We do not take
this into account as the Espruino IDE does not minimize pro-
grams automatically. An additional downside of JavaScript
is that it is harder to parse compared to the binary wasm files.

From these benchmarks we can conclude that WARDuino
has reasonable performance compared to Espruino in both
execution time and code size.

5.4 A Breakout Game
We also investigated how well the WARDuino VM performs
for programming microcontrollers in practice by implement-
ing a simple breakout game rendered on a 128x160 display.
To stress test the WARDuino VM we implemented the dis-
play driver entirely in WA. This minimal driver consists of
three functions, initialise-display, clear-screen and
fillrectangle. Our first implementation had reasonable
performance but calling the clear-screen function was no-
ticeably slower than a pure C implementation. The reason is
that every pixel consists of 16 bytes which required two calls
to the SPI driver. Clearing the screen requires 20480 pixels to
be transferred and thus 40960 invocations. To speed up the
display driver we implemented a 16 bytes SPI burst trans-
fer primitive. Performance of the display with the 16 byte
primitive is still slower than the C version but fast enough
to render the game.
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6 Related Work
In this paper we have investigated the use of WebAssembly
for programming microcontrollers. Our related work spreads
over many areas going from programming languages for
microcontrollers to techniques for updating and debugging
virtual machines. In the following sections we give a short
overview of the most related techniques and how they differ
from our experiment.

6.1 Languages for Programming Microcontrollers
The world of microcontrollers and programming languages
for programming them has a very rich culture. A wide range
of programming languages have been ported to various hard-
ware platforms: Forth [14], BASIC [8], Java [4], Python[15],
Lua [7] to name a few. Here we restrict ourselves to com-
pare popular approaches for programming the ESP family
of microcontrollers, the microcontroller platform on which
we tested WARDuino.

Still, the predominant programming language for pro-
gramming the ESP processor is the C language [9]. The ad-
vantage of using C is that the programs can execute fast and
that debugging can be done with a so called JTAG hardware
debugger. This (costly) hardware debugger is usually not
available for the high level programming languages running
on these devices. Downside of the C language is that once a
potential bug is found the programmer needs to re-flash the
hardware and restart the device completely. Flashing the chip
can take long, making the development of microcontroller
software a rather slow process.

The Zerynth Virtual Machine [10] is a virtual machine for
Python programs running on microcontrollers. They allow
accessing all the hardware primitives from within Python
and even allow debugging of the C extensions of the Python
environment. Unfortunately, as far as we can tell the VM
does not allow breakpoints on the Python code itself.
Espruino [19] allows programmers to use a dialect of

JavaScript by running a JavaScript interpreter on the chip.
Espruino allows the programmer to interactively load code
into the interpreter. From version 1.8 basic debugging sup-
port is provided for Espruino. The VM is unfortunately too
slow to program the device drivers in JavaScript. Therefore,
most support for displays and sensors is hardcoded.
C# [6] can be executed on the ESP32 microcontroller on

the nanoframework virtual machine. Videos show that the
nanoframework supports debugging. From the documenta-
tion it only seems possible to make use of the C# language.
Finally, the footprint of the virtual machine is quite big. In-
stalling the nanoframework VM seems only possible on a
Windows machine. Moreover, the precompiled binaries were
no longer available on the github page at the time of writing.
The chip can also be programmed in Lua which is inter-

preted and uploaded to the chip. In order to speed up the
execution of the Lua programs developers can implement

components in C and call them from within Lua. The VM is
sculpted to the execution of Lua programs.

MicroPython[3] is a highly optimized version of a subset
of the Python programming language. It provides on the
chip compilation of Python programs. Micro benchmarks
showed that MicroPython is much faster than our current
implementation of WARDuino. We plan to improve the per-
formance of WARDuino by implementing a JIT compiler.
Finally, MicroPython unfortunately does not provide any
means for remote debugging.

6.2 Dynamic Software Updates
In literature there are many techniques for dynamic software
proposed. Tesone et al propose 𝑔𝐷𝑆𝑈 [17]. A dynamic soft-
ware updating mechanism for both live programming and
production environments. They provide safe update point
detection using call stack manipulation. They show that the
update mechanism does not incur any overhead of the global
performance of the application outside the update window.
Cazolla et al. have made use of static analysis over Java

programs to only perform updates when they are considered
safe [2]. Compared to other work the disadvantage of this
technique is that the statical analysis needs to be performed
over the whole code base. This means that the technique
does not scale for third party libraries.

Wernli et al. propose a solution by making use of proxies
to incrementally replace the updated objects [18]. Unfor-
tunately this creates some problems with respect to object
identity during the update window. Many other techniques
provide a form of manual update mechanism [11, 13].
It is clear that there are many techniques that could be

applied in the context of WARDuino to safely update func-
tions and data even when they are not of the same type.
Investigating such techniques is part of future work.

7 Conclusion
In this paper we have presented WARDuino an extension
to the WebAssembly standard specifically for programming
microcontrollers. These extensions provide WebAssembly
with live code updates, remote debugging, and give access
to the hardware modules of the microcontroller. Live code
updates make sure that only type correct functions can be
replaced. Micro benchmarks show that the VM has good
performance compared to Espruino, a popular JavaScript
VM for programming the ESP32 microcontroller. While per-
formance compared to Espruino is good, there is still a quite
large gap with the execution speeds one can expect from C.
In future work we aim to reduce this gap by implementing a
JIT compiler.
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(𝑆𝑡𝑜𝑟𝑒) 𝑠 ::= {inst 𝑖𝑛𝑠𝑡∗
,tab 𝑡𝑎𝑏𝑖𝑛𝑠𝑡∗
,mem𝑚𝑒𝑚𝑖𝑛𝑠𝑡∗ }

(𝐼𝑛𝑡𝑎𝑛𝑐𝑒𝑠) 𝑖𝑛𝑠𝑡 ::= {func 𝑐𝑙∗
,glob 𝑣∗
,tab 𝑖?
,mem 𝑖? }

(𝐶𝑙𝑜𝑠𝑢𝑟𝑒) 𝑐𝑙 ::= {inst 𝑖 ,code 𝑓 }
(𝑉𝑎𝑙𝑢𝑒𝑠) 𝑣 ::= t.const 𝑐
(𝐴𝑑𝑚𝑖𝑛. 𝑜𝑝𝑒𝑟 .) 𝑒 ::= .. | call 𝑐𝑙

| label𝑛{𝑒∗} 𝑒∗ end
| local𝑛{𝑖; 𝑣∗} 𝑒∗ end

(𝐿𝑜𝑐𝑎𝑙 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑠) 𝐿0 ::= 𝑣∗ [_] 𝑒∗
𝐿𝑘+1 ::= 𝑣∗ label𝑛{𝑒∗} 𝐿𝑘 end 𝑒∗

Figure 4. WebAssembly syntax

A Formal Specification of WARDuino
In this appendix we give the formal semantics of WARDuino.
We specify the formal semantics as an extension of Web-
Assembly as specified by Haas et al. [5]. Details about the
primitives and the type system are omitted here to focus on
those parts of the operational semantics which we extended.
In figure 4, we give an overview of the runtime syntax

of the stack based WebAssembly virtual machine. The store
𝑠 consists of a set of module instances, table instances and
memory instances. A module instance consists of closures,
global variables, tables and memories. A closure is repre-
sented by a tuple of the module instance and a code block.
Values consist of constants. To elegantly represent the se-
mantics a number of administrative operators are introduces.
The most important ones are local to indicate a call frame
for function invocation (possibly over module boundaries)
and label witch marks the extend of control construct.
Reductions operate over a configuration 𝑠; 𝑣∗; 𝑒∗ which

consists of a global store, the local values 𝑣∗ and the active
instruction sequence 𝑒∗ being executed.

The two reduction rules which govern the order of evalu-
ation are shown in figure 5, The step-i rule splits a configu-
ration into its context and its focus and takes one step of the
↩→𝑖 relation. The second rule step-local explains how to
evaluate a function which might reside in a different module.
Note that it changes the currently executing module and the
local variables.

A.1 Remote Debugging Extensions
To facilitate debugging of WebAssembly programs we ex-
tend the semantics with remote debugging constructs. We
follow the style for defining a debugger semantics as out-
lined by Torres et al [12]. The goal of these constructs is
to provide lightweight extensions to the operational seman-
tics of WebAssembly which is strong enough to provide the
most common remote debugging facilities. We first give an

(step-i)
𝑠; 𝑣∗; 𝑒∗ ↩→𝑖 𝑠

′; 𝑣 ′∗; 𝑒 ′∗

𝑠; 𝑣∗;𝐿𝑘 [𝑒∗] ↩→𝑖 𝑠
′; 𝑣 ′∗;𝐿𝑘 [𝑒 ′∗]

(step-local)
𝑠; 𝑣∗; 𝑒∗ ↩→𝑖 𝑠

′; 𝑣 ′∗; 𝑒 ′∗

𝑠; 𝑣∗0 ; local𝑛 {𝑖; 𝑣∗} 𝑒∗ end ↩→𝑑,𝑖 𝑠
′; 𝑣∗0 ; local𝑛𝑖; 𝑣 ′∗𝑒 ′∗ end

Figure 5. WebAssembly Meta-Rules

(𝐷𝐵𝑆𝑡𝑎𝑡𝑒) 𝑑𝑏𝑔 ::= { 𝑟𝑠 ,𝑚𝑠𝑔𝑖 ,𝑚𝑠𝑔𝑜 , 𝑠 , 𝑏𝑝}
(𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝑆𝑡𝑎𝑡𝑒) 𝑟𝑠 ::= play | pause
(𝑀𝑠𝑔) 𝑚𝑠𝑔 ::= ∅ | 𝑝𝑎𝑢𝑠𝑒 | 𝑝𝑙𝑎𝑦 | 𝑠𝑡𝑒𝑝

| 𝑑𝑢𝑚𝑝 | 𝑏𝑟𝑒𝑎𝑘+ 𝑖𝑑
| 𝑏𝑟𝑒𝑎𝑘− 𝑖𝑑

Figure 6. WARDuino Debugger Extension

overview of the extensions and then show how these exten-
sions serve as the basis to build more elaborate debugging
operations.

In figure 6 we give an overview of our syntactic extensions
to the operational semantics of WebAssembly to provide ba-
sic remote debugging operations. In the semantics we make
abstraction of the underlying communication primitives. A
concrete implementation may allow communication over
the serial port, an HTTP connection or the SPI bus. For ease
of exposition all these possible communication possibilities
are modeled through (incoming and outgoing) messages.
The main state of the debugger 𝑑𝑏𝑔 is represented as a

5-tuple which encapsulates: the running state 𝑟𝑠 , the last
incoming message𝑚𝑠𝑔𝑖 the last outgoing message𝑚𝑠𝑔𝑜 , the
WebAssembly store 𝑠 and a set of breakpoints 𝑏𝑝 . The run-
ning state indicates whether the virtual machine is in the
paused state (pause) or is running (play).

The semantics of the debugger consists of a transitioning
system where each state consists of a debugger state 𝑑𝑏, zero
or more local values 𝑣∗ and a focused operation 𝑒∗, operating
in a module instance 𝑖 .
The reduction rules for remote debugging are shown in

figure 7:

vm-run When in the play state with no incoming or out-
going messages and no applicable breakpoints, the debugger
takes one small step of the small step operational semantics
↩→𝑖 .

db-pause When the debugger receives a 𝑝𝑎𝑢𝑠𝑒 message,
the debugger transitions to the pause state. Note that it is
allowed to transition from any previous state to the paused
state. After transitioning to the paused state, the rule vm-run
is no longer applicable.
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(vm-run)
𝑠; 𝑣∗; 𝑒∗ ↩→𝑖 𝑠

′; 𝑣 ′∗; 𝑒 ′∗ 𝑖𝑑 (𝑒∗) ∉ 𝑏𝑝

{play, ∅, ∅, 𝑠, 𝑏𝑝}; 𝑣∗; 𝑒∗ ↩→𝑑,𝑖 {play, ∅, ∅, 𝑠 ′, 𝑏𝑝}; 𝑣 ′∗; 𝑒 ′∗

(db-pause)

{rs, 𝑝𝑎𝑢𝑠𝑒, ∅, 𝑠, 𝑏𝑝}; 𝑣∗; 𝑒∗ ↩→𝑑,𝑖 {pause, ∅, ∅, 𝑠, 𝑏𝑝}; 𝑣∗; 𝑒∗

(db-dump)
𝑚𝑠𝑔 = 𝑗𝑠𝑜𝑛(bp, 𝑠, 𝑣∗, 𝑒∗)

{pause, 𝑑𝑢𝑚𝑝, ∅, 𝑠, 𝑏𝑝}; 𝑣∗; 𝑒∗
↩→𝑑,𝑖 {pause, ∅,𝑚𝑠𝑔, 𝑠, 𝑏𝑝}; 𝑣∗; 𝑒∗

(db-run)

{pause, 𝑟𝑢𝑛, ∅, 𝑠, 𝑏𝑝}; 𝑣∗; 𝑒∗ ↩→𝑑,𝑖 {play, ∅, ∅, 𝑠, 𝑏𝑝}; 𝑣∗; 𝑒∗

(db-step)
𝑠; 𝑣∗; 𝑒∗ ↩→𝑖 𝑠

′; 𝑣 ′∗; 𝑒 ′∗

{pause, 𝑠𝑡𝑒𝑝, ∅, 𝑠, 𝑏𝑝}; 𝑣∗; 𝑒∗
↩→𝑑,𝑖 {pause, ∅, ∅, 𝑠 ′, 𝑏𝑝}; 𝑣 ′∗; 𝑒 ′∗

(db-bp-add)

{𝑟𝑠, (𝑏𝑟𝑒𝑎𝑘+𝑖𝑑), ∅, 𝑠, 𝑏𝑝}; 𝑣∗; 𝑒∗
↩→𝑑,𝑖 {𝑟𝑠, ∅, ∅, 𝑠, (𝑏𝑝 𝑈 𝑖𝑑)}; 𝑣∗; 𝑒∗

(db-bp-rem)

{𝑟𝑠, (𝑏𝑟𝑒𝑎𝑘−𝑖𝑑), ∅, 𝑠, 𝑏𝑝}; 𝑣∗; 𝑒∗
↩→𝑑,𝑖 {𝑟𝑠, ∅, ∅, 𝑠, (𝑏𝑝\𝑖𝑑)}; 𝑣∗; 𝑒∗

(db-break)
𝑖𝑑 (𝑒∗) ∈ 𝑏𝑝

{play, ∅, ∅, 𝑠, 𝑏𝑝}; 𝑣∗; 𝑒∗ ↩→𝑑,𝑖 {pause, ∅, ∅, 𝑠, 𝑏𝑝}; 𝑣∗; 𝑒∗

Figure 7. WARDuino reduction rules for remote debugging

db-dump In the paused state the debugger can request
a dump of the state of the virtual machine. This dump is
communicated to the debugging host by means of an outgo-
ing message which next to all the WebAssembly state also
contains the breakpoints of the debugger.

db-run When the debugger is in the pause state, the pro-
grammer can restart execution by sending a 𝑟𝑢𝑛 message.

db-step When the debugger receives the 𝑠𝑡𝑒𝑝 message in
the pause state, it takes one step (↩→𝑖 ). The debugger remains
in the pause state.

db-bp-* In the pause state breakpoints can be added and
removed.

db-break When the debugger is in the play state and the 𝑖𝑑
of currently executing expression is in the list of breakpoints
the debugger transitions to the pause state.

While we model a basic set of stepping primitives, there
are a number of traditional breakpoints that can be encoded
with the given primitive debugging operations.

step-into This stepping command is offered only when
the current instruction is a function call. In order for the
debugger client to verify whether this command should be
active it can request a dump of the current execution and
enable the step-into command in the GUI. Execution of the
step-into command is exactly the same as db-next.

step-out When the programmer is debugging inside of a
function, they might want to step out of the function call.
Because the end of a function is an actual instruction in Web-
Assembly the debugger can inspect the body of the function
and add breakpoints for all the exit points of the function.
Important here is that the debugger needs to take note of the
callstack at the moment a step-out is requested. To handle
recursive calls correctly, the program should only be paused
if one of the breakpoints is hit while the callstack has the
same height. If the breakpoint is hit on a larger callstack, the
program should be resumed (by sending 𝑟𝑢𝑛).

step-over Similar to step-into, step-over should only be
activated when the next instruction is a call instruction. In-
stead of following the call the step-over stepping command
stops the debugger when the call is finished. The instruction
sequence to express step-over with our basic debugging con-
structs are: take one step to go into the function (db-step),
execute the step-out stepping command.

A.2 Safe Dynamic Code Updates
Next to remote debugging the program we allow the pro-
grammer to upload new programs and to update functions,
global variables, tables and memory. Figure 8 provides an
overview of the reduction rules to dynamically update the
WebAssembly program.

upload-s When updating the whole WebAssembly store,
the pending breakpoints are reset and a call to the main
entry of the program is pushed on the stack. Note that after
uploading the new store the debugger is still in the PAUSE
state allowing the programmer to add breakpoints before
starting the execution.

update-f Partial updates of the store are captured in the
update-f rule. We only show the rule for updating functions,
updating globals, tables and memory of a store instance
follow the same form. Important is that updates are only
allowed in case the type of the values being overwritten
corresponds with the updated value.
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(𝐷𝐵𝑆𝑡𝑎𝑡𝑒) 𝑑𝑏𝑔 ::= {𝑟𝑠,𝑚𝑠𝑔𝑖 ,𝑚𝑠𝑔𝑜 , 𝑠, 𝑏𝑝}
(𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝑆𝑡𝑎𝑡𝑒) 𝑟𝑠 ::= play|pause
(𝑀𝑠𝑔) 𝑚𝑠𝑔 ::= ∅|𝑝𝑎𝑢𝑠𝑒 |𝑝𝑙𝑎𝑦 |𝑠𝑡𝑒𝑝

|𝑑𝑢𝑚𝑝 |𝑏𝑟𝑒𝑎𝑘+ 𝑖𝑑
|𝑏𝑟𝑒𝑎𝑘− 𝑖𝑑

|𝑢𝑝𝑙𝑜𝑎𝑑 𝑠

|𝑢𝑝𝑑𝑎𝑡𝑒𝑓 𝑖𝑑𝑖 𝑖𝑑𝑓 𝑐𝑜𝑑𝑒 𝑓

|𝑢𝑝𝑑𝑎𝑡𝑒𝑙 𝑗 𝑣

(upload-s)
𝑖𝑑𝑚𝑎𝑖𝑛 =𝑚𝑎𝑖𝑛(𝑠 ′)

{pause, 𝑢𝑝𝑙𝑜𝑎𝑑 𝑠 ′, ∅, 𝑠, 𝑏𝑝}; 𝑣∗; 𝑒∗
↩→𝑑,𝑖 {pause, ∅, ∅, 𝑠 ′, ∅}; (call 𝑖𝑑𝑚𝑎𝑖𝑛)

(update-f)
𝑠 ′ = 𝑢𝑝𝑑𝑎𝑡𝑒𝑓 (𝑠, 𝑖𝑑𝑖 , 𝑖𝑑𝑓 , 𝑐𝑜𝑑𝑒 𝑓 )

{pause, 𝑢𝑝𝑑𝑎𝑡𝑒𝑓 𝑖𝑑𝑖 𝑖𝑑𝑓 𝑐𝑜𝑑𝑒 𝑓 , ∅, 𝑠, 𝑏𝑝}; 𝑣∗; 𝑒∗
↩→𝑑,𝑖 {pause, ∅, ∅, 𝑠 ′, 𝑏𝑝}; 𝑣∗; 𝑒∗

(update-local)

{pause, 𝑢𝑝𝑑𝑎𝑡𝑒𝑙 𝑗 𝑣 ′, ∅, 𝑠, 𝑏𝑝}; 𝑣 𝑗1𝑣𝑣
𝑘
2 ; 𝑒∗

↩→𝑑,𝑖 {pause, ∅, ∅, 𝑠, 𝑏𝑝}; 𝑣 𝑗1𝑣
′𝑣𝑘2 ; 𝑒∗

Figure 8. Reduction rules for code updates

update-local Next to updating the store there are also local
variables which might need to be updated. Similar to partial
updates to the store, local variables can only be updated with
values of the same type.

Our update strategy for functions and data is quite simple.
We only allow code updates if the underlying types remain
the same. While this provides safety, it can still have unde-
sirable effects. For example when updating, in the middle
of a recursive function the new base conditions might have
already been exceeded. The WARDuino VM does not tackle
these kinds of problems. In future work we hope to improve
on this by incorporating techniques from work on dynamic
software updates [17].

B Debug Dump
An example of the debug dump of a running program dis-
cussed in section 5.1.1 can be found in the listing of figure 9.

C Full Benchmark Results
Figure 10 and table 1 show the results of the micro bench-
marks discussed in Section 5.3 on page 5. They contain the
same results as Figure 3.We see thatWARDuino outperforms
Espruino on all micro benchmarks by at least a factor 5.

1 { "pc": "0x559ec7578271",

2 "breakpoints": ["0x560c56a0e26b"],

3 "mod" : [{

4 "functions": [

5 {"fidx": "0x4",

6 "from": "0x559ec7578251",

7 "to": "0x559ec7578256"},

8 {"fidx": "0x5",

9 "from": "0x559ec7578259",

10 "to": "0x559ec7578278"}

11 ],

12 "glob":[],

13 "tab":[], "mem": []

14 }],

15 "tables": []

16 "mem": []

17 "callstack": [

18 {"type": 0,"fidx": "0x5", "sp": -1,

19 "fp": -1,"ra": null},

20 ...,

21 {"type": 3, "fidx": "0x0", "sp": -1,

22 "fp": 0, "ra": "0x559ec7578261"}

23 ]

24 }

25

Figure 9. Debug dump of a running program. pc stands
for program counter, fidx is the function id, from and to
indicate the memory location of a function. The fp, sp and
ra are the frame pointer, stack pointer and return address
respectively.

An implementation of the same program in native C is
be much faster than WARduino. A native C implementation
uses registers. WebAssembly is a stack machine and there-
fore requires a lot of (slow) memory access to get arguments
to operations. Using JIT compilation is one of the waysWAR-
Duino could reduce the amount of memory operations and
speed up. Implementing JIT compilation for WARDuino is
part of our future work.
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