
This is a preprint, the final article can be found at https://doi.org/10.1016/j.scico.2023.102989

Gaiwan: a Size-Polymorphic Typesystem for GPU Programs

Robbert Gurdeep Singha,b,∗, Christophe Scholliersa

aUGent, Krijgslaan 281-S9, 9000 Gent, Belgium

bIMEC, Remisebosweg 1, 3001 Leuven, Belgium

Abstract

General-purpose computing on graphics processing units (GPGPU) is increasingly used for number crunching
tasks such as analyzing time series data. GPUs are a good fit for these tasks as they can execute many
computations in parallel. To leverage this parallelism, the programmer is forced to carefully divide their
input data into data blocks that are then distributed over the many GPU cores. The optimal block sizes
are unrelated to the programmers goals, instead, they are based on characteristics of the used GPU and
the input data. GPGPU programmers must additionally be wary of introducing race conditions in their
programs.

We believe that GPGPU programmers should be able to express GPU transformations without worrying
about splitting data or race conditions. For this, we created Gaiwan, a GPGPU programming language with
a size-polymorphic type system that only features data race free operations. Programmers can declare the
effects of program steps on the sizes of buffers by using affine functions (eg. int[2n] _ int[n+ 1]). From a
step sequence, Gaiwan derives a set of constraints on the size and shape of valid inputs. Gaiwan guarantees
that the program will run for any input satisfying these constraints. This means that one program may
analyze both a hundred data points and millions of data points, as long as the input satisfies the constraints.

We prove that our system is sound and show it works with two usage examples. Our benchmarks show that
our initial OpenCL-based implementation of Gaiwan scales to handling large programs.

Keywords: GPU, Polymorphism, Type System, OpenCL, Unification

1. Introduction

Parallel hardware such as Graphics Processing Units (GPU) promise great performance gains for those
experts capable of programming these devices. Unfortunately, not everyone that wants to reap the benefits
of GPUs for general purposes (GPGPU) is such an expert. GPUs have thousands of processing units that all
work in parallel. This gives rise to two difficulties. First, the programmer needs to take care not to introduce
race conditions in their program. Second, they must also explicitly divide their data into so-called blocks,
which are assigned to individual cores [1, 2]. The sizes of these blocks are unrelated to the problem the user
is trying to solve. Instead, the sizes are related to the available space in the various memories of the GPU.
Improper block sizes can have a detrimental impact on the performance of a GPU program [3]. Selecting
the optimal block sizes is no simple task and requires much prior experience with GPU programming. To
make matters even worse, the optimal value is device and input dependent.

∗Corresponding author

Preprint submitted to Elsevier July 13, 2023

https://doi.org/10.1016/j.scico.2023.102989

The developer new to GPGPU does not have this experience but may still want to benefit from the perfor-
mance gains GPUs could offer. We believe that they should be able to express the transformations a GPU
needs to carry out on their data without having to worry about data races or block sizes.

Many data processing applications involve time series data. These are arrays of measurement values that
are carried out periodically over longer periods. Because of their nature, the sizes of these data sets are not
fixed. However, a programmer might want to do a GPU analysis over an arbitrary period without having
to rewrite their program. We believe that a program that processes the data for 5 days should also be able
to process the data for 5 years. This enables users to test their programs on smaller data sets and have the
confidence that they will still work for larger data sets.

Many higher level programming languages such as Accelerate[4, 5], StreamIt[6, 7] and others [8, 9, 10] exist
with the aim of lowering the barrier to GPGPU programming. Unfortunately, these languages do not give
full visibility into the effects each transformation has on the size of the buffers, especially when these sizes
are not known beforehand. This makes it difficult for a novice user to transform their data processing idea
into a GPU program that will work on data sets of different sizes.

We see a need for a programming language targeted at non-expert GPGPU users that want to analyze time
series data without having to explicitly chop up their data. Such a language should allow users to specify
how large a buffer is as a formula, rather than as fixed number. The language should also be capable of
efficiently deriving the access patterns of any program. These can then be used to algorithmically select the
optimal block sizes based on the size of the input and the available hardware. To make a program in such
a programming language safe, we must be able to check its type regardless of the size of the input. This is
no straightforward task because a program may, for example, take the average of every five points before
continuing its computations. Such a program cannot process a data set of length 234123 as this is not a
multiple of five. It is clear that a type checker for a program that works for a variable size of input will
need to put some constraints on the length of its inputs, for example that the length should be a multiple
of five. A GPGPU language for time-series data should present these constraints to the user. Additionally,
the language should ensure that data races are not possible.

In this paper we present Gaiwan, a data race free programming language featuring a size-polymorphic type
system. Gaiwan allows users to specify that a function called flatten, for example, transforms an array
of n pairs into an array of 2n elements. This function could be assigned the type (A × A)[n] _ A[2n].
Our flatten function is parametric in the size of the input n. An input of 42 pairs will yield an output of
84 items. Additionally, the function is parametric in the shape of the inputs elements. Before the arrow,
we specified that flatten expects a buffer of pairs of two elements of the same shape (A × A). After the
arrow we stated that it returns a buffer of elements of the shape A, where A refers to the A used before the
arrow. If we supply pairs of integers (int× int) we will get back two ints per pair. To support this kind
of polymorphism, we created a novel unification system that codifies this behavior.

Our programming language also clearly separates the selection of data and the computation of new values.
This aids performance optimization[10]. Users select what data is needed and then specify how to compute
a single element of the output in a data race free manner. Our type checker returns the output type of the
program as well as a set of constraints on the input buffers. To the best of our knowledge, there are no type
systems for GPU programs that allow us to express such transformations and to retrieve a set of constraints
on the length of the possible inputs as simple affine functions.

In this paper we first discuss the various constructs of Gaiwan informally in section 2. Then, we formalize
our novel type system (section 3) and its unification process (section 4). With that, we can discuss the
evaluation rules (section 5) and prove they are sound (section 6). Next we briefly look at implementation
considerations in section 7. An evaluation of our work is given in section 8. We look at two usage examples
of Gaiwan: one where we analyze GPS traces and one where we compute the dot product. Additionally,
we show that our concepts are practically implementable and executable on real hardware with a prototype
Gaiwan executor for OpenCL. Finally, we compare our concepts to the state of the art, discuss future work
and conclude the paper in sections 9 to 11.

2

A[n] ⇾ B[n] A[n]⇾B[1] A[n],B[n+2] ⇾ (B×B×A×B)[n]

ff ff ff ff ff ff

...

...

f
f

f
f

f

...

f

0

f

...

...

f f f

...

mapper reducer shaper

Figure 1: Transformations in Gaiwan

The source code of the prototype implementation of Gaiwan is available at https://github.com/TOPLLab/
gaiwan/tree/elsref-2023.

2. Gaiwan Programming Constructs

In this section we lay out the basic constituents of a Gaiwan program. Our language is designed to be as
small as possible while still allowing the exploration of our size-polymorphic type system.

Gaiwan programs deal with data buffers (section 2.1) which can be manipulated by transformations (sec-
tion 2.2). The order in which these transformations are applied is dictated by our coordination plan (sec-
tion 2.3). This plan is a list of actions where the output of previous action becomes the input to the
next.

2.1. Buffers

As in any GPU programming language, data buffers play a significant role in Gaiwan. A data buffer
containing the integers 1, 2 and 3 is written explicitly as (bufint[3] 1 2 3). The type of this buffer is
int[3], where int is the shape of the elements in the array and 3 is the length. To avoid confusion we
use the word “shape” to denote the type of the elements in the buffer. The word “type” will be reserved
to describe the type of buffers and transformations on them. In general, the type buffer of length n with
elements of shape S is written as S[n].

Interestingly, in Gaiwan, both the n and the S in the type S[n] may contain variables. We allow any number
of variables in the shape part of a buffer type. The size, on the other hand, must be an affine function in at
most one variable (a ·n+ b, with a and b fixed integers). For example, the type (A×A)[2 ·n+1] represents
a buffer whose elements have a tuple shape where both items are of shape A, that is, there exists a shape
A such that the buffers elements are of shape (A×A). The length of the typed array must be odd, that is
there exists an n such that the length of the buffer is 2n+ 1.

2.2. Transformations

Gaiwan has three main data race free transformations that can be executed on buffers: Mappers apply the
same function to every element in a buffer; Reducers combine all values of a buffer into one; and finally
Shapers reshape one or more buffers to create a new one without inspecting the values of these buffers. All
our transformations have a type of the form below.

(S1[a1n+ b1], . . . , Sm[amn+ bm]︸ ︷︷ ︸
m input buffers

) _ (Sout[aoutn+ bout]︸ ︷︷ ︸
1 output buffer

)

3

https://github.com/TOPLLab/gaiwan/tree/elsref-2023
https://github.com/TOPLLab/gaiwan/tree/elsref-2023

1 mapper(idx: int , number: float) : float {
2 number+number
3 }

Listing 1: A doubling mapper

Each input buffer type Si[ain + bi] and the output buffer type Sout[aoutn + bout] have affine lengths in the
same variable (in this case n). All free variables in Sout[aoutn+ bout] must occur in at least one of the input
buffer types. The type serves two purposes. First, it ensures that the body of the transformation computes
a value of the expected shape. Second, it describes a relation between the lengths of the input buffers, and
the output buffer.

Having discussed the type of transformations briefly, we now look at the transformations Gaiwan offers.

2.2.1. Mappers: Transforming Values

The mapper is our first kind of transformation. Figure 1 shows a schematic of it on the left. It applies
a function to every element in a buffer. A mappers body may only access the value of the element it
is modifying to compute its new value. By enforcing this, there are no data dependencies between the
computations of different elements. As a consequence, we may safely apply a mappers body to the elements
of a buffer in any order and even in parallel. That is, mappers are a data race free construct.

Listing 1 shows an example mapper that doubles the values in the buffer it is given. We provide the formal
argument list and the return type on line 1. Every mapper has two arguments: (a) the index of element in
the buffer we are currently operating on (here idx of shape int), and (b) the value of that element (here
number of shape float). The return type, given after the final colon (:) on line 1 describes the shape that
returned values are expected to have. In this case the body returns a float by adding the float value
number to itself.

A mapper only has one input buffer and cannot change lengths. The type of a mapper is therefore always
of the form (S1[n]) _ (Sout[n]). For a mapper, S1 will always be the type of the argument, in this case
float, the shape of number. The output buffer has elements of the same shape (Sout) as the body returns,
here float. Listing 1 thus shows a transformation of type float[n] _ float[n].

2.2.2. Reduce: Combining Buffer Elements

Apart from transforming single elements it is often also useful to apply a function to all values of a buffer.
This is where the reducer, a parallel folder, comes in. A schematic of a reducer can be found in the middle
of figure 1. As opposed to mappers, reducers can access multiple elements. Only one element is accessed
directly (num), the other accessed elements are summarized in an accumulator.

Listing 2 shows the definition of a reducer that sums all the elements in a buffer. This reducer has two
arguments: (a) an accumulator acc of shape int together with its initial value 0, and (b) the value that is
being folded into the accumulator (num of shape float). The body returns the value the accumulator holds
in the next iteration, it must therefore be of the same shape as the accumulator (int). In the end, all values
will have been folded into the accumulator.

If the operation defined by the body of the reducer is associative, we may group elements together to
improve the runtime performance. This is done by and applying the reducer to each pair of elements and
subsequently combining the results of the reducers with the reducer. Figure 2 shows an example of this
method of execution. The number of iterations is logarithmic in the number of elements, as opposed to
linear in the sequential counterpart. For large buffers the parallelism a GPU offers can improve the time
complexity of an operation [11]. Gaiwan automatically tries to derive whether the operation is associative,
if not it falls back to the (slower) serial computation of the result.

A reducer takes a buffer of arbitrary length and reduces it to a buffer of size one. The type must therefore
always be of the form (S1[n]) _ (Sout[1]). The input shape S1 is the shape of the data parameter (in this

4

1 reducer(acc = 0 : int , num: float) : int {
2 acc + num
3 }

Listing 2: reducer computing the sum

Figure 2: Parallel scheduling of a reducer on a small buffer. The initial accumulator is combined with two elements to compute
the values for the next round.

case float, the type of num). The return shape is the shape of the accumulator (in this case int). Our
example reducer thus has the type (float[n]) _ (int[1]).

2.2.3. Shapers: Data Reshaping Transformations

Our final transformation, the shaper, allows users to restructure the data within a buffer. Figure 1 shows a
schematic of a shaper on the right. Notice how the pattern of arrows is the same for every output element.
A shaper defines these arrows and how the selected elements are combined. Listing 3 shows a shaper that
takes a buffer of even length 2n and returns a buffer of half the length that contains tuples. The type
annotation allows us to change the number of elements by specifying an affine function.

A significant restriction on shaper types is that the input shapes, the Si’s, may not use concrete types
(like int). Instead, the shapes of the element in the input buffers must be composed of a combination of
tuples and shape variables. This limitation ensures that shapers cannot inspect the precise value of a buffer
element, they may only reshuffle them. If buffer is typed A[n], buffer[i] returns a value of type A. Such
a value cannot be used in integer computations for example, because these computations only work on ints.

When a shaper is applied to a buffer, the free variables in the types are filled in. For example if we supply
an int[4] buffer (bufint[4] 1 2 3 4), the type of an A[2n] _ (A × A)[n] shaper will become int[4] _
(int× int)[2]. The shape variable A is replaced by int and the n has been derived to be 2 (from 4 = 2n).

The shape of the elements of the input buffer in Listing 3 is the free shape variable A, the length is an
affine function in one variable, in this case the function 2n. The return type of the shaper is specified as
(A×A)[n], this indicates that the output has length n and is composed of tuples of two values of shape A.
The output is half the size of the input, n output values for 2n input values. We write (A[2n]) _ (A×A)[n]
as the type of the shaper.

The first line of Listing 3 declares that this shaper has two arguments: outIdx of type int and a buffer

of type A[2n]. The first argument (outIdx) specifies the index of the value in the output buffer we are
currently computing. All other arguments, in this case only “buffer” of type A[2n], specify the input
buffer(s). In the body of a shaper, we have indexed access to the values of the input buffer by using [].
With data[i] we get the i-th value of buffer, which is of shape A. Note that the shaper is the only
transformation where indexed access can be used. The other transformations do not have buffers or arrays
in their parameter list.

We may also use multiple input buffers as shown in listing 5. In this code snippet we combine the values
of two buffers, one of type A[n] and another of type B[2n] to get a result of type (A × B × B)[n]. Sup-

5

1 shaper(outIdx: int , buffer: A[2*n]): (A × A)[n] {
2 tuple(buffer [2* outIdx], buffer [2* outIdx +1])
3 }

Listing 3: shaper of type A[2n] _ (A×A)[n] making pairs of elements of the first buffer

1 shaper(outIdx: int , bufferA: (A × A)[n]): A[2n] {
2 if(outIdx %2 == 0){ bufferA[outIdx /2]._1 } else { bufferA[outIdx /2]._2 }
3 }

Listing 4: shaper of type (A×A)[n] _ A[2n] destructuring a list of pairs into a simple list

1 shaper(outIdx: int , bufferA: A[n], bufferB: B[2n]): (A × B × B)[n] {
2 tuple(bufferA[outIdx], bufferB [2* outIdx], bufferB [2* outIdx +1])
3 }

Listing 5: shaper of type (A[n], B[2n]) _ (A×B ×B)[n] making triples of two input buffers

1 abstraction vectorLengths(baseX:int ,baseY:int):(float[n],float[n])->float[n]{
2 shaper(i:int , x:A[n], y:A[n]){
3 tuple(x[i],y[i])
4 } #
5 mapper(i: int , d: (float × float)): float{
6 sqrt((d._1-baseX)^2 + (d._2 -baseY)^2)
7 }
8 }
9

10 (retrive x newy) # (call vectorlengths 0 0)

Listing 6: Lines 1-9: Abstraction that computes distance from a basepoint to a set of points whos X and Y coordinates are
stored in two separate buffers. Line 10: coordination plan that calls the abstractioLine 10: coordination plan that calls the
abstraction.

plying the float[2] buffer [1.5, 2.5] and the int[4] buffer [5, 6, 7, 8] yields the (float× int× int)[2] buffer
[(1.5, 5, 7), (2.5, 6, 8)]. Shapers are not limited to combining elements: listing 4 shows how a list of pairs can
be destructured into a simple list.

As shapers cannot inspect the values in a buffer, the length of the input suffices to determine the permutation
a shaper applies. In the simple case of execution on a simple buffer buf, a shaper that describes the function
f will result in a buffer res. Now, res[i] = buf[f(i)], so we do not really need to compute the concrete
buffer res. Instead, the next transformation that uses res can just use buf[f(i)] instead of res[i] when
accessing data. Shapers cannot introduce data races as they do not write values.

2.2.4. Abstraction

Mappers, reducers and shapers can be combined, parameterized and given a name by placing them in an ab-
straction. The top part of listing 6 shows an example abstraction of type (int, int) → (float[n], float[n]) _
float. This abstraction combines the functionality of a shaper (lines 2-4) and a mapper (lines 5-7) to trans-
form a list of x coordinates, and a list of y coordinates, into a list of distances to a given point. The arguments
of the abstraction (baseX and baseY) define the location of the given point. Finally, the abstraction is also
assigned a name (vectorLengths), such that it can be called.

If an abstraction is executed, all occurrences of its scalar variables are substituted for the values with which
the abstraction was called. What remains is a list of transformations. These transformations are simply
executed one after the other. The output of the previous transformation becomes the input for the next.
The output of the final transformation is the output of the call to the abstraction.

An abstraction may be composed of multiple transformations. The type of the full abstraction chains the
types of these transformations. If an A[n] _ A[2n] and a float[m] _ int[m] transformation are chained,
the result is float[n] _ int[2n]. This result is acquired by first unifying the shapes, the right A of the first
type must unify with the left part of the second type. Thus we need A = float. Now we can reformulate our

6

chaining goal to float[n] _ float[2n] and float[m] _ float[m]. The next step is merging 2n and m, this
can simply be done by setting m to be 2n. We get float[n] _ float[2n] and float[2n] _ float[2n]. Now,
the middle types are the same, and we may conclude that the type of the abstraction is float[n] _ int[2n].

Apart from the contained transformations, abstractions may also have arguments. In listing 6, there are two
int arguments: baseX and baseY. We will use a different arrow (→ instead of _) to differentiate between
scalar arguments to abstractions and inputs of transformation types. If we call the abstraction in listing 6
with two ints, we get (float[n], float[n]) _ (float[n]). Therefore, the full type of the abstraction is
(int, int) → (float[n], float[n]) _ (float[n]).

Abstractions cannot be nested and may only have scalar arguments. There are no “higher order” abstrac-
tions. All abstractions therefore have a type of the following form.

(Sin,1, . . . , Sin,k︸ ︷︷ ︸
k≥0 scalar arguments

) 7→ (S1[a1n+ b1], . . . , Sm[amn+ bm]︸ ︷︷ ︸
m input buffers

) _ (Sout[aoutn+ bout]︸ ︷︷ ︸
1 output buffer

)

2.3. Coordination Plan

Gaiwan uses a coordination plan to coordinate in what order and on what data transformations are exe-
cuted. Data can be thought of going through the program from left to right while being changed by the
transformations. The output of the previous transformation step becomes the input to the next. Different
steps in the coordination plan are separated with a pipe character (#).

We have two constructs that act as sources of buffers: retrive (section 2.3.1) and literal buffers (sec-
tion 2.3.2). Once we have our data, we execute transformations on it with call. We store our intermediate
results with letB.

2.3.1. Retrive: Source of Data

The “standard input” to a Gaiwan program is a memory that contains fixed buffers of numeric data. All
buffers have a name and data. As a running example throughout this section, we will use the following,
small, memory:

{x 7→ [1.0, 2.0, 3.0, 4.0, 5.0], y 7→ [4.0, 2.0, 1.0, 3.0, 7.0], z 7→ [7, 9]}

We may construct the following memory type for it:

{x 7→ float[5], y 7→ float[5], z 7→ int[2]}

To retrieve data from our memory, we use (retrive n1 . . . nm). This action accesses the buffers with
names n1, . . ., nm. With our example memory, (retrive y) yields the tuple of one buffer ([4.0, 2.0, 1.0, 3.0, 7.0]).
We may also retrive multiple buffers. (retrive z y z) yields a triple of buffers ([7,9],[4.0, 2.0, 1.0, 3.0,
7.0],[7,9]). This construct is the only way in Gaiwan one may obtain a tuple of more than one buffer.

The type of a (retrive . . .) is the tuple of the types of the retrived buffers. For example (retrive z y z)
yields a (int[2], float[5], int[2]). Note that there is no arrow (_ nor →) in the type of a retrive.

2.3.2. Literal Buffers

Sometimes a certain short buffer is inherent to a problem. In these cases, it would not make sense to store
this buffer in the memory. Instead, the programmer may define this buffer inline in the program as (bufS[m]

n1 . . . nm) with S a shape and n1 to nm values of that shape S. The type of such a construct is the 1-tuple
containing the type S[m] with m the number of elements in the literal buffer. Note that the annotation with
shape S is required to type buffers of length zero as we cannot infer a type from the (non-exiting) concrete
values.

7

name type #in #out Inspection Execution
mapper . . . [n] → . . . [n] 1 1 ✓ in-place parallel
reducer . . . [n] → . . . [1] 1 1 ✓ in-place tree parallel
shaper . . . [an+ b] → . . . [cn+ d] ≥1 1 × need not be executed

Table 1: Summary of the available base transformations and their properties.

2.3.3. Call: Applying Transformations

Now that we have our data we wish to apply our mappers, shapers and or reducers to it. Section 2.2.4 has
shown how abstractions can group transformations and give them a name. With (call r a1 . . . am) we
may refer to these names. The last line of listing 6 shows a coordination plan using the vectorLengths

abstraction. It takes two buffers from memory by using retrive. Then, it supplies these buffers to
vectorLengths by using call, the two arguments of the abstraction are filled in with the values 0 and
0.

The type of abstractions that can be called with (call r v1 . . . vk) have the form (Sin,1, . . . , Sin,k) →
(B1, . . . , Bm) _ (Bout). With S1 to Sk the types of the parameters of the abstraction, (B1, . . . , Bm) the
types of the input buffers and Bout the type of the output buffer of the abstraction named r. The (call

. . .) fills in the parameters, so the remaining type (B1, . . . , Bm) _ (Bout) is the type of the (call . . .) if
the arguments match the shapes Sin,1 to Sin,k.

2.3.4. LetB: Naming Data

In our coordination plan data runs from left to right. To define intermediate results independent of this
stream, we can use letB. This construct assigns a name to the buffer resulting from a computation. The
syntax is (letB x = wl1 in wl2) with wl1 and wl2 programs (work lists). First, wl1 is executed to get a
single value buffer (Dv). Then, wl2 is executed with a memory that is extended with x 7→ Dv.

As an example, we may wish to compute the lengths of the vectors above after y-translation. Assuming
translate is an abstraction containing a mapper that adds the value of its argument to each element of
the buffer.

1 (letB newY = (retrive y) # (call translate 2)
2 in (retrive x newy) # (call vectorlengths 0 0))

The type of (letB x = wl1 in wl2) is the type of wl2 under the memory extended with the type of wl1. For
our example this means that the letB construct has the type of (retrive x newy)#(call vectorlengths 0 0) typed
under a memory extended with {newY 7→ int[5]}.

2.4. Summary

We have three main transformations: mappers, reducers and shapers. These can be grouped and parame-
terized by abstractions. The coordination plan describes in what order the abstractions are applied to the
memory to compute a final result.

Table 1 summarizes the differences between the main transformations. A mapper gets a single value and
computes a new value to put in its place, this process is executed for every element in the input buffer.
A reducer takes an accumulator value and combines it with a single value of the input to compute the
accumulator value to be used with the next element. The result of the reducer is the buffer containing only
the final accumulator. The body of mappers and reducers may inspect at most a single value of their input
buffer. The shaper on the other hand accesses multiple elements of multiple buffers, but may not inspect
the value of these elements. This restriction ensures that the “shaping” of a buffer only depends on the
length of the buffer.

A program’s coordination plan describes how the input is transformed using defined abstractions. The plan
is a list of “constructs” that are executed one after the other. We separate these constructs with the #
symbol. The output of the construct before the # becomes the input to what comes after it.

8

Name Type #in #out Function
retrive Type of the retrived buffers 0 ≥ 1 Read from memory
letB Type of the inner work list 0 1 Name a result in memory
call Output type of called abstraction ≥1 1 Execute an abstraction

Table 2: Summary of the constructs in the coordination language.

In Gaiwan, the input is a set of named buffers with elements of a fixed shape. We call this set the memory.

The constructs in the coordination language are shown in table 2. The (retrive . . .) construct retrieves
one or more buffers from our input memory. Intermediate results can be added to it temporarily with (letB

. . .), which assigns a name to a buffer resulting from a sub-plan.

Abstractions form the basis of our computations, they are activated with the (call . . .) construct. This
construct returns at most one buffer. By combining (retrive . . .) and (letB . . .) we may construct
outputs of more than one buffer.

We have described the constituents of the Gaiwan programming language. It is a small language that is just
large enough to allow us to explore the size-polymorphic type system that goes with it.

3. Size polymorphic Type System

The central contribution of Gaiwan is its size polymorphic type system. Up to this point we have mostly
looked at the operational aspects of our language. In listing 6 we saw a program that computed the distance
from a list of points stored in two separate lists of x and y coordinates. Looking at the code in listing 6,
we see that not every input memory can be valid. The program requires that the input memory has buffers
named “x” and “y”, else (retrive x y) would not work. Furthermore, these buffer should have the same length
(n).

Our type system infers two properties of a program: (a) the type of the result (b) a list of constraints the
input memory should satisfy. If the actual memory supplied to Gaiwan satisfies the constraints (b), the
output will be the derived type (a). The program will not start if the memory fails to satisfy the constraints.
The results (a) and (b) of our type checker are related. All free variables in the result type occur in the
constraints. In the same context as our example, the program (retrive x y) #(call vectorLengths 0 0) has the type
int[n]. The n used here is the n in the constraints: {x 7→ int[n], y 7→ int[n]}. Because the same n is used
for the lengths of the buffers x and y they must have the same length.

In this section we will lay out our type system in detail. The main typing relation is ⊢p, which relates
programs and parts thereof to their types and constraints. There are two variants of the relation. The first
form is for buffer results, which may have constraints; the second is for transformations, which always have
the empty set of constraints. Both forms are shown below.

Buffer result

Γ | A ⊢p term : B|C or
Transformation result

Γ | A ⊢p term : T |∅

Here, the variable environment is denoted by Γ, and A contains a list of abstractions available to term.
After the colon (:) we find the type (B or T) and a set of constraints C that go with it. For transformations,
this set of constraints will always be empty as a transformation does not access the memory directly, it only
reads its input buffers. Terms returning buffers types B may have interacted with the memory through
(retrive . . .), and may therefore have constraints.

In this section we will first describe the form of our types and expressions (section 3.1). Then, the typing
rules will be presented. Our typing rules can be split up in four parts. First, we discuss transformation
definitions (section 3.2). Second, we describe the coordination language that dictates the order in which
these transformations run (section 3.3). Third, we look at the arithmetic expressions used in the body of

9

transformations (section 3.4). Finally, we combine all these rules to derive the type of instantiated programs
(section 3.5).

3.1. Semantic Entities

The inductive definition of our formalization’s semantic entities are listed in figure 3. Entities with a bar
(e.g. e) indicate zero or more occurrences of the over-lined non-terminal in a fixed order, a tuple. Most of
our expression are S-expressions [12]. These are written between brackets, the first word between brackets
signifies the kind of expression we are using. The other elements between the brackets are the arguments.
In the examples in the previous section we used the syntax accepted by our implementation, in the formal
sections of this paper we will use S-expressions instead.

The first entity in figure 3 is S, which we use to denote shapes. Gaiwan supports two primitive shapes:
the shape of integral numbers (int) and of floating point numbers (float). We can also describe shapes
abstractly with a variable name (x), for clarity we will always use uppercase letters for shape variables
(e.g. A). Two shapes can be combined to become the shape of a pair by using the × operator. In our
formalization we will distinguish between buffer types (B) and transformation types (T). Buffer types (B)
combine a shape (S) with an affine length, we write S[num · n + num]. Transformation types (T) relate
two tuples of buffers B with an arrow _. Our buffers types always have a corresponding set of constraints
C going with them. These are mappings from buffer names x to buffer types. A pair of buffer types and
constraints will be written as B|C . Buffer types and regular shapes can be used in the image of our variable
environment Γ.

A data buffer D is written as (bufS[num] e), with e the elements of the buffer, S their shape and num the
fixed number of elements. The S[num] subscript is required to type the buffer if num is not strictly positive
(see section 6.6). Note that we use num and not an affine function, the sizes of buffers D are always fixed
integers. If the buffer only contains values (v), it is a value buffer, denoted by Dv. Of course every Dv is a
D.

All of our transformations have a transformation type T as their first argument. Their last argument holds
an expression containing the body e of the operation. Our three transformers are represented as follows:

• (mapr T xi xd e) for mappers. The names assigned to in xi and xd are variable names to be used in
the body e. xi Contains the variable name for the index of the input buffer we are currently processing.
xd Holds the variable name that will be assigned the value of the data point at the current index.

• (redr T xd xa e0 eb) for reducers. We have xd and xa as variable names for respectively the value
and the accumulator. The initial value of the accumulator is given in e0. The body of the reducer is
stored in eb.

• (shpr T xi xa e) for shapers. Here, xi denotes the index, and there is one xa for each input buffer.
The change in length is encapsulated in the type T .

We also need an administrative entity (shpr* . . .) that acts as a marker, keeping track of buffers supplied
to a shaper while running the program (see section 5.2). Transformers can be grouped in an abstraction
(abst . . .) that has a unique name r that can be called. Apart from a name, an abstraction may have
scalar variables assigned to the names xa. Their shapes are integrated in the S part of the second argument
of the abstractions (S 7→ T).

An instantiated program is written as (main P M). Where P is the program and M is the memory the
program is instantiated with. The memory M is a mapping from names x to concrete buffers Dv represented
as a cons list with a colon “:” as delimiter. M is the set of elements in the supplied memory of the form
x 7→ Dv. The program P has a list of abstractions A and a so-called work list wl.

The work list wl represents the coordination plan that consists of at least one step w. Possible steps include:
transformers (t), literal buffers (D), calls to abstractions by their name r and with arguments e, retriveing

10

one more buffers by their name x or using a letB. A left associative # symbol fuses every two steps.

(retrive a) # (call r1 . . .) # (call r2 . . .)

≡ ((retrive a) # (call r1 . . .)) # (call r2 . . .)

The bodies of mappers, shapers and reducers as well as the arguments to call are arithmetic expressions
e. These expressions are standard arithmetic expressions extended with let, if, pairs and index. (index
x e) Takes the e-th element out of the buffer named x. In the following sections we will see that the type
system ensures that (index . . .) only occurs in shapers.

For sake of simplicity, we will assume that we do not use the same variable name x for different purposes.
Any program can be made to adhere to this by using α-conversion [13].

Substitutions (σ) and evaluation context (E) and will be discussed in section 4 and section 5 respectively.

3.2. Transformations

The typing rules for transformations are shown in figure 4. These rules look as shown below.

Γ | ∅ ⊢p (transformer . . .) : fresh(T)|∅

Note again that all these rules return an empty set of constraints (C = ∅). All transformations already have
a specified type T as their first argument. These rules thus validate if the declared type matches the actual
type of the transformer. Applying fresh to T substitutes all free shape and size variables by fresh names
to avoid collisions. There is a typing rule for each transformation. All of them will inspect the type of the
body using the typing relation for arithmetic expressions (⊢e).

TT-Mapr dictates that a mapper has type S1[n] _ S2[n] if its body e returns a S2 if the index (xi) is an
int, and the value (xd) is of shape S1.

TT-Redr specifies how reducers are typed. The body of a reducer eb takes an accumulator value of shape
Sa and a data point of shape Sd to compute a new accumulator value of type Sa. We require that the
initial value of the accumulator e0 also has shape Sa. If the above requirements are met, we return a buffer
containing one item (the last accumulator value), the type is Sd[n] _ Sa[1]

TT-Shpr specifies that the body e of a shaper should return a value of shape So under an extended
environment. The environment Γ is extended with xi mapping to int and the the xv1 to xvm mapping to
the argument buffer types. These buffer types are obtained from the type T in the first argument of the
(shpr T . . .) construct. As motivated in section 2.2.3, shaper types may only contain free variables, this
is enforced by onlyFree (see Appendix A.1, page 42). The TT-BufferShaper rule will be discussed in
section 5.2.

Abstractions are not transformations, but by calling them with arguments of the correct shape, a (call

. . .) construct becomes a transformer. The ⊢a relation is used to type abstractions, it relates an (abst . . .)
with a mapping from arguments shapes to a transformation type. Abstractions are always typed under an
empty environment Γ, we therefore omit the environment in the ⊢a rules. Constraints are also not required
as abstractions always have the empty constraint. The TT-Abstr rule types an abstraction’s constituents
t under the environments built by its argument list. The shapes of the arguments are derived from the
second argument of (abst . . .). Abstractions cannot call other abstractions, so the constituents are typed
with A = ∅.

3.3. Coordination Plan

Now that we know how to type transformations, we can combine them using a coordination plan. Figure 5
shows the relevant typing rules. First, we will discuss our individual work item constructs, then we will
explain how they are combined with TP-List and TP-LetB.

11

Types and constraints

S ::= int | float | S × S | x
B ::= S[num · x+ num]

T ::= B _ B

C ::= (x 7→ B) : C | ∅
Γ ::= (x : B) : Γ | (x : S) : Γ | ∅

Buffers

D ::= (bufS[num] e)

Dv ::= (bufS[num] v)

Transformations

A ::= d

d ::= (abst r (S → T) xa t)

t ::= (mapr T xi xd e)

| (redr T xd xa e0 eb)

| (shpr T xi xa e)

| (shpr* D M) admin

Work lists

wl ::= wl # w | w
w ::= t | D

| (call r e)

| (retrive x)

| (letB x wl wl)

Instantiated program

R ::= (main P M)

P ::= (prog A wl)

M ::= (x 7→ Dv) : M | ∅

Variables

x ::= variable not otherwise mentioned

Arithmetic expressions

e ::= (+ e e) | (- e e) | (let x e e)

| (8 e e) | (/ e e) | (if e e e)

| (tuple e e) | (fst e) | (snd e)

| (index x e)

| num | x
v ::= (tuple v v) | num

Evaluation contexts

Ew ::= (main (prog A Ewl) M)

Ewl ::= · | Ewl # w
ER ::= EB | (shpr* EB M)

| Dv # (call r (v,E, e))

| Dv # (redr T xd xa E eb)

EB ::= (Dv, (bufS[num] v,E, e), D)

E ::= · | (tuple E e) | (tuple v E)

| (+ E e) | (+ v E)

| (- E e) | (- v E)

| (* E e) | (* v E)

| (/ E e) | (/ v E)

| (let x E e)

| (fst E) | (snd E)

| (if E e e) | (index x E)

Unifiers

σ ::= σ, u | u
u ::= ⟨x/S⟩
| ⟨λ(a · x1 + b)/(f1(a, b) · x2 + f2(a, b))⟩

Figure 3: Syntax of Gaiwan. Over lined identifiers (e.g. d) represent an ordered tuple of zero or more occurrences.

12

Γ | A ⊢p (trans . . .) : T |C
variables

Abstractions

Term

Type

constraint

TT-Mapr
(xi 7→ int), (xd 7→ S1),Γ ⊢e e : S2 T = (S1[n]) _ (S2[n])

Γ | ∅ ⊢p (mapr T xi xd e) : fresh(T)|∅

TT-Redr
(xa 7→ Sa), (xd 7→ Sd),Γ ⊢e e : Sa Γ ⊢e e0 : Sa T = (Sd[n]) _ (Sa[1])

Γ | ∅ ⊢p (redr T xd xa e0 eb) : fresh(T)|∅

TT-Shpr
(xi 7→ int), (xv1 7→ S1[e1]), . . . , (xvm 7→ Sm[em]),Γ ⊢e e : So

T = (S1[e1], . . . , Sm[em]) _ (So[eo]) ∀i.onlyFree(Si)

Γ | ∅ ⊢p (shpr T xi (xv1 . . . xvm) e) : fresh(T)|∅

TT-BufferShpr
⊢ Ms : Γs Γs ⊢ D : B

Γ | ∅ ⊢p (shpr* (D) Ms) : (B)|∅

TT-Abst
(x1 7→ S1) : . . . : (xm 7→ Sm) | ∅ ⊢p t : T |∅

⊢a (abst r ((S1, . . . , Sm) → T) x1 . . . xm t) : (S1, . . . , Sm) → T

Figure 4: Typing rules for transformations and abstractions. These rules all return an empty set of constraints and may
themselves not use abstractions. Note that all variable environments Γ in this picture stem from TT-Abstr

13

Let us start with the simplest rule: TP-Buf. This rule specifies how a tuple of literal buffers is typed.
The notation ⊢ Di : Bi specifies that the buffer Di has type Bi under the empty environment (See also
TM-Buffer in figure A.13). Expressions in buffers cannot use variables at the top level, and are therefore
always typed under the empty environment Γ = ∅. Literal buffers do not interact with the memory, as a
consequence, their type has no constraints (∅).

We use (call . . .) to invoke an abstraction on the current buffers. If we call an abstraction of type S 7→ T
with values of shape S, we get a transformation of type T as result. Our TP-Call rule codifies this, it
validates that the arguments are of the correct shape with ⊢e and returns the type T . Note that there are
no constraints associated with a call. There are no interactions with the memory from within calls. We
only read the input buffer.

Our (retrive . . .) construct takes buffers from the memory M. If we say that (retrive a) has type
(A[n]) then it must be the case that M has the key a mapping to the type A[n]. To enforce this we return
a set of constraints. For every unique returned variable name, we create a mapping to a fresh type Bi.
The resulting type is the list of fresh types in the same order as the variables. The mapping we built is
returned as the accompanying constraints C. Note how all free variables in the returned type are also in the
constraints by construction (lemma 1, page 25).

In section 2.2.4 we briefly touched on typing #-delimited work items. TP-List formalizes this for any work
list wl #w of length > 1.1 Note that # is left associative. The rule requires that the work list wl results in a
tuple of buffers (Γ | A ⊢p wl : B1|C) to which the work item w will be applied. This work item w must have
a transformation type T . We derive the final type using the join function, defined in TM-Join. It relies on
unification, which we will explore in section 4. Our join fuses the buffer types B1 and the transformation
T = B2 _ B3. Let us use an example with an input buffer of type B1 = (int[3n]) and a transformation of
type T = A[m] _ A[2m]. First, we unify B1 and B2, the resulting unifier σ ensures that σ(B1) = σ(B2).
For the example we get that A should be an int and that m is 3n. We then apply the unifier to the return
type of T , and get that A[2m] becomes int[6n].

We can add items to the memory M in the scope of a (letB x wl1 wlL) construct. TP-LetB shows
how this is done. We type the two parts wl1 and wlL, and combine the results. First, we analyze wl1, the
work list that will compute the buffer to which the variable x will be bound. It can only return a single
buffer, hence the return type is of the form (B1)|C1 . The constraints C1 of wl1 describe requirements for
the memory used in wl1, these all stem from uses of (retrive . . .) in wl1. We may now use x in wlL, but
x is neither added to Γ nor to C when typing wlL. This diverges from what someone would expect based on
other type systems. The environment does not need to be extended to type the body of the letB. Instead,
the requirement for the existence of x moves upward in the program in the constraints CL from the point
where it is used ((retrive x)). Any constraint requiring the existence of x is removed by japply when
typing a (letB x . . .).

TT-Japply describes how we merge the constraints of the value (wl1) and the body (wlL) of a (letB

x wl1 wlL) construct. The result of the action is B1|C1 ∪ (CL \ {x}) to which a unifier σ is applied.
We keep all the constraints of wl1 and wlL except for the constraints placed on x. These constraints
are only applicable inside the (letB . . .). Since the value for x is derived from other buffers in wl1, we
can transform the constraints on x to constraints on the variables used in wl1. This is what the unifier
σ does, it ensures σ(CL[x]) = σ(B1). The buffer type assigned to usages of the buffer named x in wlL
is thus transformed to match B1, the buffer type that results from wl1. Additionally, σ ensures that if
any other named buffer is used in both wl1 and wlL, they are assigned an identical type. By applying
σ to the merged constraints, the constraints on x are pushed into the constraints C1. Let us look at an
example term (letB x = (bufint[6] 1 2 3 4 5 6) in ((retrive x) #(call get3rds))), with get3rd an abstraction of type
() → A[3p] _ A[p] that selects every third element of the input buffer. The type of wl1 is (int[6])|∅ , the
body of the letB has type A[n]|{x 7→ A[3m]} . We will use japply (x 7→ int[6], ∅, (A[m]), {x 7→ A[3m]}) to

1A work list of length one must be a simple work item and is typed by one of the other rules in figure 5.

14

derive the type of the whole term. A unifier is obtained from unifying {x 7→ int[6]} and {x 7→ A[3m]} which
yields that A should be int and that m is 2. The total type is thus σ(A[m]) = int[2] and the accompanying
constraint is empty as x is removed from the constraints of wlL.

3.4. Arithmetic Expressions

The actions on the data points in our buffers are described using an arithmetic expression language. This is
the final component we need to discuss before we can look at the type of an instantiated program. The typing
rules for the arithmetic expression language are the standard typing rules one would expect. Appendix A.3
on page 42 shows them in full. Binary arithmetic operations return values of the same numeric shape as the
supplied arguments (TE-BinOp). Tuples, constructed with (tuple e1 e2) have a product shape S1 × S2

where S1 is the shape of the first element and S2 that of the second. By using (fst e) and (snd e) we can
respectively get the first (e1) and second (e2) back out of a tuple e in their original shape (TE-Fst,TE-
Snd). Our (if ec et ef) implements an if-expression, if the condition ec is non-zero the et gets executed,
otherwise ef gets executed. The condition must have type int, the branches et and ef must have the same
type (TE-If).

Expressions may contain variables. These reside in an environment Γ that assigns names to values of shape
S and buffers of type B = S[numla ·nl+numlb]. The former kind of bindings can be traced back to following
sources:

• argument names of abstractions (x1 . . . xm in TT-Absr);

• argument names of mappers (xi and xd in TT-Mapr);

• argument names of reducers (xd and xa in TT-Redr);

• argument names of shapers (xi in TT-Shpr);

• arithmetic expression let bindings (x TE-Let),

Non-buffer elements of Γ are accessed by placing their assigned name instead of the value, TE-Var will type
these names correctly. Variable-buffer bindings only originate from shapers (xv1 . . . xvm in TT-Shpr). They
are only accessible using the (index . . .) construct, which selects a single element from a buffer TE-Index.

3.5. Instantiated Programs

Now that we have typed all the parts of a program, we investigate how a full program is typed. Figure 6
shows the typing rules for the remaining semantic entities.

A full program is written as (prog A wl) with A a list of abstractions and wl a work list. TP-Prog
mandates two things for well-typed programs. First, all the abstractions in A must be well-typed, that is
the type indicated in their second argument must correspond with their implementation. Second, the work
list must be typeable under the empty environment using the rules from figure 5 with A as abstractions list.
The type of the program is the type of this work list.

If we want to execute a program, we must give it a memory by using the (main p M) construct. The type
of the program p must be a buffer type BT with a set of constraints CT . TP-Validate checks if the memory
M adheres to the constraints CT and transforms BT to a concrete buffer type. To do this it requires that
M contains all needed keys (dom(M) ⊆ dom(CT)). Because M is concrete, the unifier merging M and C
will assign concrete values to all free variables in C. By construction (see lemma 2), the free variables of
BT are a subset of those of CT . Hence, applying the unifier to BT will yield a concrete type, the type the
instantiated program is executed with M.

15

TP-Buf
∀i. ⊢ Di : Bi

Γ | A ⊢p (D1, . . . , Dn) : (B1, . . . , Bn)|∅

Γ | A ⊢p (trans . . .) : T |C
Variables

Abstractions

Term

Type

Constraint

TP-Retrive

{x′
1, . . . , x

′
m} =

m⋃
i=1

{
xmin{j | xj=xi}

}
∀i ∈ {1, . . . ,m}.Bx′

i
is fresh

Γ | A ⊢p (retrive x1 . . . xn) : (Bx1 , . . . , Bxn)
∣∣{x′

1 7→ Bx′
1
, . . . , x′

n 7→ Bx′
m
}

TP-Call
(abst r ((S1, . . . , Sn) → T) . . .) ∈ A ∀i ∈ {1, . . . , n}.Γ ⊢e ei : Si

Γ | A ⊢p (call r e1 . . . en) : fresh(T)|∅

TP-List
Γ | A ⊢p wl : B1|C1 Γ | A ⊢p w : T2|∅ B|CJ = join (B1|C1 , T2)

Γ | A ⊢p wl # w : B|CJ

TM-Join
C = σ(C1) σ = unify(B1, B2) B = σ(B3) FV (B3) ⊆ FV (B2)

B|C = join (B1|C1 , (B2 _ B3))

TP-LetB
Γ | A ⊢p wl1 : (B1)|C1 Γ | A ⊢p wlL : BL|CL B|C = japply (x 7→ B1, C1, BL, CL)

Γ | A ⊢p (letB x wl1 wlL) : B|C

TT-Japply
σ = unify (C1 ∪ {x 7→ B1}, CL)

σ (B2|C1 ∪ (CL \ {x})) = japply (x 7→ B1, C1, BL, CL)

Figure 5: Typing rules for programs and work lists

TP-Prog
∀di ∈ A.⊢a di : T ∅ | A ⊢p wl : B|C

Γ | ∅ ⊢p (prog A wl) : B|C

TP-Main
∅ | ∅ ⊢p p : BT |CT B2 = validate(M, BT |CT)

⊢ (main p M) : B2

TP-Validate

FV (B) ⊆ FV (C) dom(C) ⊆ dom(M) σ = unify
(
MB

∣∣
dom(C), C

)
σ(B) = validate(M, B|C)

Figure 6: Typing rules for instantiated programs. MB represents a memory with concrete buffers, M represents the type of
this buffer (MB ⊢ M).

16

TM-unify
σ = unify1(SL[eL], SR[eR]) σO = unify (map(σ, TIL . . .),map(σ, TIR . . .))

σO, σO(σ) = unify ((SL[eL], TIL . . .), (SR[eR], TIR . . .))

TM-unifyNil

∅ = unify((), ())

TM-unify1
σ = unifyS(SL, SR) σe = solve(eL, eR)

σe, σ = unify1 (SL[eL], SR[eR])

TM-unifyM
dom(C1) ∩ dom(C2) = {x1, . . . , xm} σ = unify ((C1[x1], . . . , C1[xm]), (C2[x1], . . . , C2[xm]))

σ = unify(C1, C2)

Figure 7: Rules for unification, eL and eR are shorthand for numL1 · nL + numL2 and numR1 · nR + numR2 respectively.
Composition of 2 unifiers with comma means applying them right to left when they are used.

4. Unification

Up to now we have seen that unification plays an important role in Gaiwan. It is used to join work list
items, to type (letB . . .) constructs, and it is used to get the type of an instantiated program.

Figure 7 shows the rules for unifying tuples of buffer types. We see that TM-Unify unifies the shapes and
the sizes of the first element in either tuple. Then, it applies the resulting unifier to the rest of the lists and
it recursively unifies it. When all elements are unified, TM-UnifyNil returns an empty unifier. This is a
like Robinson’s unification of lists[14].

For shape variables unification works as one would expect. It is implemented in TM-Unify1. We will lay
out the inner workings of this function in section 4.1. The unification of buffer sizes is non-trivial. It is one
of the main contributions of this paper, we have codified it in solve. We discuss the definition of solve in
section 4.2.

4.1. Shapes

We use the notation ⟨A/S⟩ to indicate that the shape variable A should be replaced by the shape S. S does
not need to be a shape variable itself, it may be a concrete shape, or a compound shape, which in turn may
contain variables.

We use the standard recursive unification process to find the most general unifier for the two shapes that are
supplied. Many algorithms exist for this problem, such as Robinson unification [14] and derivative works[15].
The result of these algorithms is a substitution σ, a collection of replacements of the form ⟨A/S⟩.

If unify1 fails, σ in TM-Unify has no value and thus unify fails and so does anything that depends on it.
Note that unify1 may succeed with the empty set as result, this is not considered a failure.

4.2. Sizes

The sizes of buffers in Gaiwan are affine functions in one variable (an + b, with a, b ∈ Z). When unifying
buffers, these sizes must be unified as well. The result of our unification should be a most general unifier
that equates the two given affine functions. We will use the notation ⟨λ(a · n+ b)/(f1(a, b) · l + f2(a, b))⟩ to
denote a substitution that replaces the affine function ac ·n+ bc with f1(ac, bc) · l+f2(ac, bc) for any fixed ac
and bc in Z. Whenever such a substitution is applied to a buffer size, it should hold that the valid concrete
sizes that satisfy the new affine function also satisfy the old function. We say that a substitution is sound
if this is the case.

17

Definition 1 (Sound size substitution).
A substitution ⟨λ(a · n+ b)/(f1(a, b) · l + f2(a, b))⟩ is said to be sound w.r.t. an affine function acn+ bc iff
it holds that ∀l ∈ Z.∃n ∈ Z.f1(ac, bc) · l + f2(ac, bc) = acn+ bc

To define solve in TM-Unify1 we aim to unify two affine functions: a1n+ b1 and a2m+ b2. We must find a
unifier that makes them identical. Our unifier consists of two substitutions: σs = ⟨λ(a · n+ b)/(fs1(a, b) · l + fs1(a, b))⟩
and σt = ⟨λ(a ·m+ b)/(ft1(a, b) · l + ft2(a, b))⟩. One for lengths with variable n the other for the lengths
with variable m. Both return affine functions in the variable l.

It should thus hold that ⟨λ(a · n+ b)/(fs1(a, b) · l + fs2(a, b))⟩ (a1n+b1) is equal to ⟨λ(a ·m+ b)/(ft1(a, b) · l + ft2(a, b))⟩ (a2m+
b2), or put differently:

fs1(a1, b1) · l + fs2(a1, b1) = ft1(a2, b2) · l + ft2(a2, b2)

must hold for any l, in particular zero and one, so we may conclude that

fs2(a1, b1) = ft2(a2, b2) ∧ fs1(a1, b1) = ft1(a2, b2).

Our two substitutions must be sound with respect to their original affine functions, so the following should
hold with as := fs1(a1, b1) = ft1(a2, b2) and bs := fs2(a1, b1) = ft2(a2, b2).

∀l ∈ Z. ∃n,m ∈ Z. a1n+ b1 = asl + bs = a2m+ b2

Take arbitrary l, and the corresponding n and m. It holds that a1n+ b1 = asl+ bs = a2m+ b2. We will try
to express n and m in terms of l and the known values a1, b1, a2 and b2. With this knowledge we will derive
the exact definition of σs and σt.

First, we isolate m and n:

m = (a1n+ b1 − b2)/a2

n =
as
a1

l +
bs − b1
a1

= ul + v with u =
as
a1

and v =
bs − b1
a1

Combining the previous two results gives us the following

m =
a1n+ b1 − b2

a2
=

a1(ul + v)

a2
+

b1 − b2
a2

=
a1u

a2
l +

a1v + b1 − b2
a2

This results holds for l = 0 and for non-zero l (with possibly different values for m). As m must always be
whole, the constant part a1v+b1−b2

a2
must be whole as well. The same holds for the value multiplied by l,

so a1u
a2

must also be whole. We thus need that a1v + b1 − b2 and a1u are both divisible by a2. This first
divisibility holds if and only if ∃v.a1v = b2 − b1 mod a2. The second requirement is satisfied iff a1u is a
multiple of a2. From this we can derive values for u and v.

u = lcm(a1,a2)
a1

= a1a2

a1·gcd(a1,a2)
= a2

gcd(a1,a2)

v = the smallest for v of a1v = b2 − b1 mod a2

=

0 b2 = b1

a−1
1 (b2 − b1) If the multiplicative inverse of a1 modulo a2 exists

error otherwise

18

Now we have enough information about how n and m relate to l that we can derive fs1, fs2, ft1 and ft2 by
simple substitution.

acn+ bc = ac(ul + v) + bc

= acu︸︷︷︸
fs1(ac,bc)

l + acv + bc︸ ︷︷ ︸
fs2(ac,bc)

=⇒ σs = ⟨λ(a · n+ b)/(au · l + (av + b))⟩

acm+ bc = ac

(
a1u

a2
l +

a1v + b1 − b2
a2

)
+ bc

=
aca1u

a2︸ ︷︷ ︸
ft1(ac,bc)

l +
aca1v + b1 − b2

a2
+ bc︸ ︷︷ ︸

ft2(ac,bc)

=⇒ σr =
〈
λ(a ·m+ b)

/(
aa1u
a2

· l + a(a1v+b1−b2)
a2

+ b
)〉

The solve function as used in TM-unify1 of figure 7 unifies two affine functions. It is defined as follows.
There are four possible cases:

• The affine functions are in different variables, in which case solve returns σs, σt as derived above. The
σs unifier will transform all the buffer sizes of the first argument. The buffers in the second argument
will be transformed by σt.

• The affine functions are in the same variable (let it be n) and

– are identical: solve returns ∅. The elements are already the same, nothing needs to happen.

– differ and intersect in a point with whole coordinates: solve returns ⟨λ(a · n+ b)/(0 · l + x)⟩, with
x the value of n at the intersection and l fresh. This effectively replaces all occurrences of n with
a numeric value.

– else: solve fails

4.3. Example

We will now look at concrete example of our unification.

unify((A× int)[2 · n1 + 4], B[4 · n2])

We first unify the shapes with unifyS and get that ⟨B/(A× int)⟩ as most general unifier. Next we look at
the lengths, we need to find the result of solve(2 · n1 + 4, 4 · n2). From the formulae above we know that
u = 2 and v = 0 thus:

• σs = ⟨λ(a · n1 + b)/(a · 2 · l + (a · 0 + b))⟩ = ⟨λ(a · n1 + b)/(a · 2 · l + b)⟩

• σr =
〈
λ(a · n2 + b)

/(
a·a1·2
a2

· l + a(a1·0+b1−b2)
a2

− b
)〉

=
〈
λ(a · n2 + b)

/(
a·2·2
4 · l + a(4−0)

4 − b
)〉

= ⟨λ(a · n2 + b)/(a · l + a− b)⟩

We now apply these substitutions to our original sizes to verify that we indeed get the same result.

• σs(2 · n1 + 4) = (2 · 2)l + 4 = 4 · l + 4

19

• σr(4 · n2) = ⟨λ(a · n2 + b)/(a · l + a− b)⟩ (4 · n2) = 4 · l + 4

We may also apply these substitutions to other affine functions:

• σs(n1) = ⟨λ(a · n1 + b)/(a · 2 · l + b)⟩ (n1) = (1 · 2 · l + 0) = 2l

• σr(n2) = ⟨λ(a · n2 + b)/(a · l + a− b)⟩ (n2) = (1 · l + 1− 0) = l + 1

5. Evaluation rules

In this section we explain how programs are evaluated with a memory M. The ⇝p reduction relation
defines this process. An instantiated program is written as (main (prog A wl) M). The notation below
indicates that the instantiated program before the⇝p arrow is transformed into the program after the arrow
in one step.

(main (prog A wl) M) ⇝p (main (prog A wl′) M)

Most of the rules will be of the form Ew [wl1] ⇝p Ew [wl2] where Ew is an evaluation context that extracts
the first few elements from the work list wl in the program. The explicit definition of Ew can be found in
figure 3. For any (fixed) A, M and w1 to wn the following equivalence holds. For clarity, we have underlined
the matched parts of the work list.

Ew

[
wl1
]
⇝p Ew

[
wl2
]

≡ (main (prog A wl1 # w1 # w2 # . . . # wn) M)

⇝p(main (prog A wl2 # w1 # w2 # . . . # wn) M)

Because the same instance Ew occurs on both sides of⇝p, the A, M and w1 to wn remain unchanged. None
of our reduction rules ⇝p will ever modify A, these are the defined abstraction of the program, and are not
affected by running it. The memory M remains fixed as well – programs can only query elements from the
memory, they do not alter it. The (letB . . .) construct adds elements to the memory M by recursively
looking if a step can be taken for the program with the extended M (this will be discussed in detail in
section 5.3).

We will go through the evaluation rules from low-level to high-level. First, we look at the expressions in the
bodies of our transformations. Then we move on to how our transformations are applied. Finally, we look
at how transformations are combined using the coordination plan.

5.1. Arithmetic Expressions

The evaluation rules for transformations and our coordination language rely on the fact that there is some
way that non-value expressions in buffers are transformed into values. All the rules we will see in the
following sections use Dv to denote buffers of values. They also use v for initial values of accumulators and
arguments to (call .) In this section we will discuss the reduction rules that transform expressions e into
values v and by extension D into Dv.

The E-Other rule (figure 8) applies the arithmetic expression reduction relation ↪→ e to the first non-valued
arithmetic expression of an instantiated program. This rule uses Ew to select the first item(s) of the work
list. In turn, ER selects the first non-value arithmetic expression of these items. As figure 3 shows, ER has
four forms that all select the first non-values arithmetic expression:

• EB = (Dv, (bufS[num] v, ·, e), D), which selects the left most non-value buffer element in a tuple of
buffers.

• (shpr* EB M), which uses EB to select the first non-value element in the buffer contained in a
shpr* (see section 5.2).

• Dv # (call r (v, ·, e)), which selects the first non-valued argument to a call applied to a buffer that
only contains values.

20

E-Other
e1 ↪→ e e2

Ew [ER[e1]] ⇝p Ew [ER[e2]]

E-Let

(let x v e) ↪→ e e[x/v]

Figure 8: Non-trivial evaluation rules. The remainder of the rules for evaluation of expressions are straightforward and can be
found in Appendix A.4 on page 43.

• Dv #(redr T xd xa · eb), which selects the non-valued accumulator of a reducer applied to a buffer
that only contains values.

Now that we have the first non-valued arithmetic expression, we use ↪→ e to take a step.

The arithmetic expression reduction relation ↪→ e is defined in Appendix A.4 on page 43. These are the
standard rules to carry out addition, subtraction and multiplication. Our division and modulo operations
are special because we have a special rule that specify that division and modulo by zero is always zero2.
Selecting the first and second element from a tuple are also implemented how one would expect. The
conditional (if ec et ef) construct is replaced by et if ec is a non-zero number otherwise, if it is zero, it is
replaced by et.

Let bindings are implemented using substitution. E-Let is also shown in figure 8. Once we know the value
v to assign to x in (let x v e), we replace the (let . . .) by e with all occurrences of x substituted by v.

5.2. Transformations

Figure 9 shows the evaluation rules for mappers, reducers and shapers. These rules work with the two first
items of the work list. The first item will contain the buffers on which to execute the transformation in the
second item. There may be more elements in the work list after the first two, these are captured by Ew and
do not change.

First, we look at mappers. E-CallMapper shows how a mapper is applied to a buffer of values (Dv).
If the buffer contains non-value expressions the E-Other rule will evaluate them into values. We have
(bufS[k] v1, . . . , vk) # (mapr r T xi xd e) at the front of our work list. Mappers apply the function de-
scribed by e to all elements in the buffer. The variables xi and xd may be used in e to refer to the index
and the value in the input buffer respectively. Our rule replaces every value vk of the input buffer by
e[xi, xd/k, vk]. The square brackets denote substitution. For the j-th element, every occurrence of xi is
replaced by j, the index of the value. Each xd in e is substituted by the value vj . After the application
of the mapper, the (mapr . . .) construct itself is eliminated, only the output buffer Do remains. Note that
the buffer maintains its size k. Both the input buffer Di and the output buffer Do have length k in their
subscript.

Reducers are codified in two rules, E-CallRedr and E-CallRedr0. The first rule, combines the ac-
cumulator v0 and the first element of the buffer vi,0. This value is computed as eb[xd, xa/vi,0, v0], after
applying the rule, the input buffer loses one element. The (redr . . .) construct remains in place and holds
the new accumulator value. Once the input buffer has a size less than one, E-CallRedr0 extracts the
accumulator from the (redr . . .) construct and replaces the start of the work list by a new buffer with the
accumulator value as its only element. If the accumulator expression is not a value, E-Other applies.

Finally, to execute shapers, we need four rules. The first rule, E-CallShpr, initiates a shaper. It creates
a memory Ms that assigns the name xv,i to the i-th source buffer Dv

s,i. The rule also computes the length
k of the output buffer. This is done by applying the join function to the type of the input buffers, and the

2We chose not to include exceptions to our language to focus on our type system. Although tedious, exceptions can be
added to our language as described in Types And Programming Languages [13, Chapter 14].

21

transformation type T of the shaper3. Each element of the output buffer of length k is the body of the
shaper. Just as with mappers, each occurrence of the variable in xi in an element is substituted for the
index of that element. Contrary to the previous transformations, the other arguments xv,1, . . . , xv,m are
not substituted. Instead, they are made available through Ms by a (shpr* . . .) construct wrapping the
constructed buffer.

The (shpr* . . .) construct is used to reduce (index x num) expressions. These expressions can only occur
in the bodies of shapers (and thus also in (shpr* . . .)). E-Index and E-IndexOutBounds use the Ms

saved in the (shpr* . . .). E-Index replaces (index x num) with the value at index num in the buffer
named x in Ms. If the index is out of bounds, E-IndexOutBounds places a zero of the correct shape4

at the position of the (index . . .). By combining the rules to evaluate (index . . .) with E-Other we can
transform all the resulting elements to values. Once this happens, E-EndShpr applies. This rule removes
the (shpr* . . .) wrapper around the buffer such that the program can continue.

We briefly return to typing now that we have explained the (shpr* . . .) construct. TT-BufferShpr in
figure 4 shows that this construct has the same type as the buffer it holds typed under Γs. This Γs = {x 7→
Bx | x ∈ dom(Ms) ∧ ⊢ M[x] : Bx} is a mapping of the variable names of the shaper to the corresponding
buffer types (figure A.13, page 42). The elements of Γs are only used by the TE-Index rule that types
(index . . .) constructs, other interactions with the environment only use scalars.

5.3. Coordination Plan

The coordination plan links calls to transformations and queries the memory to provide input data. For
transformers, the work list always started with a tuple of buffers. Here, we will show where these buffers
come from, how we extend the memory and how we invoke transformers. Figure 10 shows the reduction
rules for the coordination plan.

There are two ways a buffer can get introduced in the work list. First, it can be written literally. We
do not need a rule for this case as literal buffers are values. Second, the buffer is obtained from memory
with (retrive . . .). In this case E-Retrive inspects the memory M contained in Ew. It selects the right
buffers Dv

i and composes them into a tuple.

Our (letB x wl1 wlL) construct allows us to add elements to the store for a limited scope. When it is the
first element of the work list, we evaluate it. There are three rules involved in this: E-LetB1, E-LetBBuf
and E-LetBEnd

As long as wl1 is not a single value buffer, E-LetB1 applies. This rule extracts wl1 and wraps it into a new
instantiated program construct. Then, it recursively applies ⇝p to it and unwraps the result to get the new
value of wl1. As soon as wl1 is a tuple of one buffer of values, we evaluate wlL under an extended memory.
E-LetBBuf codifies this. This rule extracts wlL and wraps into a new instantiated program construct with
an extended memory M′. M′ is derived by extending5 the original M with a new binding mapping the
variable name x of the (letB . . .) with the value buffer computed by wl1. We recursively apply ⇝p on the
wrapped value and unwrap the result to get the new value of wlL. Once both wl1 and wlL only contain
values, there is no need for the (letB . . .) construct anymore. E-LetBEnd removes it, and only keeps the
buffers resulting from wlL.

In our semantics (letB . . .) constructs serve as a tracker. They can be nested and keep track of the
names and buffers that should be added to the store when evaluating the second argument (wlL). Other
programming languages typically use a stack for this purpose. We could also have used a stack, but the type
system, the language and the corresponding proof grew hand in hand, and we arrived at this formalization.

3For a well-typed program, this will always succeed. The length k will be a concrete integer because all the input buffers
were concrete and thus had a fixed integral length.

4(0int×float = (tuple 0 0.0))
5Note that we have assumed that all names in the program are unique

22

E-CallMapr
Dv

i = (bufS[k] v0, . . . , vk−1) Do = (bufS′[k] e[xi, xd/0, v0], . . . , e[xi, xd/k − 1, vk−1])

Ew [(Dv
i) # (mapr r T xi xd e)] ⇝p Ew [Do]

E-CallRedr
Dv

i = (bufS[k] vi,0, vi,1, . . . , vi,k−1)

k > 0 Dv
o = (bufS[k] vi,1, . . . , vi,k−1) e1 = eb[xd, xa/vi,0, v0]

Ew [(Dv
i) # (redr r T xd xa v0 eb)] ⇝p Ew [(Dv

o) # (redr r T xd xa e1 eb)]

E-CallRedr0
k ≤ 0

Ew

[
((bufS[k])) # (redr r T xd xa v0 eb)

]
⇝p Ew

[
(bufS′[1] v0)

]
E-CallShpr
∅ | ∅ ⊢p Dv

s : Bv
s |∅ Sc

o[k] = join (Bv
s |∅ , T) Ms = (xv,1 : Dv

s,1) : . . . : (xv,m : Dv
s,m)

Ew [Dv
s # (shpr r T xi (xv,1 . . . xv,m) e)]

⇝p Ew

[
(shpr* ((bufSc

o[k]
e[xi/0], . . . , e[xi/(k − 1)])) Ms)

]
E-Index

x1 7→ (bufS[m] v0 . . . vm−1) ∈ Ms 0 ≤ num < m

Ew [(shpr* EB [E[(index x1 num)]] Ms)] ⇝p Ew [(shpr* EB [E[vnum]] Ms)]

E-IndexOutBounds
x1 7→ (bufS[m] v0 . . . vm) ∈ Ms ¬(0 ≤ num ≤ m)

Ew [(shpr* EB [E[(index x1 num)]] Ms)] ⇝p Ew [(shpr* EB [E[0S]] Ms)]

E-EndShpr

Ew [(shpr* (Dv) Ms)] ⇝p Ew [(Dv)]

Figure 9: Evaluation rules for transformations in coordination plans. For the sake of clear presentation we have omitted the
premises to define S′ in E-CallMapr, E-CallRedr0. The premise to be added to each rule is: S′[numla · nl + numlb]|C =
join

(
Bv

i , T
)
with Bv

i the concrete type of Dv
i (or (Dv

1 , . . . , D
v
m) in the case of E-CallShpr). Note that the notation va, . . . , vb

used in buffers is empty if b < a.

23

E-Retrive
Ew = (main (prog A Ewl [·]) M) ∀i.(xi 7→ Dv

i) ∈ M
Ew [(retrive x1 . . . xm)] ⇝p Ew [(Dv

1 . . . D
v
m)]

E-LetBEnd

Ew [(letB x Dv
1 Dv

2)] ⇝p Ew [Dv
2]

E-LetB1
Ew = (main (prog A Ewl [·]) M) (main (prog A wl1) M) ⇝p (main (prog A wl2) M)

Ew [(letB x wl1 wl3)] ⇝p Ew [(letB x wl2 wl3)]

E-LetBBuf

Ew = (main (prog A Ewl [·]) M)
(main (prog A wl2) M′)

⇝p (main (prog A wl3) M′)
M′ = (x 7→ Dv) : M

Ew [(letB x (Dv) wl2)] ⇝p Ew [(letB x (Dv) wl3)]

E-Call
Ew = (main (prog A Ewl [·]) M) (abst r (S → T) xa t) ∈ A

Ew [Dv # (call r v)] ⇝p Ew [Dv # t[xa/v]]

Figure 10: Evaluation rules for coordination plans

Our final rule, E-Call, invokes an abstraction by name. To do this, it looks it up the definition in A. From
the definition it derives the variable names xa and body t. The (call . . .) construct is replaced by t[xa/v]
where v are the values of the arguments.

6. Soundness

We have made some bold claims about our size-polymorphic type systems. In this section we will provide
more evidence for the claims we made. First, we will discuss a lemma that formalizes an intuition for why
our type system is correct. Then, we will use this lemma to prove progress and preservation. Finally, we
will show that:

For any run configuration (main p M) it holds that if

• ∀B ∈ B. ∃S. ∃k ∈ Z. B = S[0 ∗ x+ k] and (k fixed)

• ⊢ (main p M) : B

then, there exists a tuple of value buffers Dv of type B such that

(main p M) ⇝p
∗ (main (prog A Dv) M)

This section contains an abbreviated version of our proofs. The full proofs can be found in Appendix B
(starting on page 45).

6.1. Definitions

We will use the term “constructed type” for types that could have been derived for a program. The
terminology “inhabited” is sometimes also used to refer to this concept.

Definition 2 (Constructed). we say a pair B|C is constructed if there exists a wl, A and a Γ such that
A | Γ ⊢p wl : B|C

When we type an instantiated program we apply validate to the type and constraints of the program (TP-
Validate). These are actually the buffer type and constraints derived for the work list in the program
(TP-Prog). A work list is typed by repeatedly using TP-List, which uses join. We define two new

24

functions join⋆ and validate⋆ to make it more convenient to derive properties about chained application of
TP-List.

Definition 3 (Repeated join and validate). We define join⋆(. . .) and validate⋆(. . .) inductively as follows:

join⋆(B|C) = B|C
join⋆(B1|C1 , T1, T2, . . . , Tn) = join⋆(join (B1|C1 , T1) , T2, . . . , Tn)

validate⋆(M, B1|C1 , T1, . . .) = validate(M, join⋆(B1|C1 , T1, . . .))

We can immediately write the following lemmas:

Lemma 1 (Join preserves containment of free variables). If FV (B) ⊆ FV (C) then for any T1, . . . , Tn (also
n = 0): B⋆|C⋆ = join⋆(B|C , T1, . . . , Tn) =⇒ FV (B⋆) ⊆ FV (C⋆)

Proof. By induction on n. See Appendix B.1.

Lemma 2. For any constructed pair B|C , it holds that FV (B) ⊆ FV (C)

Proof. By well-founded induction on the derivation of A | Γ ⊢p wl : B|C . See Appendix B.2.

M is the set of elements in the supplied memory of the form x 7→ Dv. We will sometimes write this set as
ME . Each of the Dv in ME has a corresponding type derived by TP-Buf. We may now define a related
mapping from names to the types of buffers associated with them:

MB :=
{
x 7→ B

∣∣ x ∈ dom(M) ∧ ∅ | ∅ ⊢p M[x] : B|∅
}

In this paper we will omit the superscript when it is clear from context what M is used.

6.2. Validation Lemma

Informally, we say that a substitution σ is consistent with a store M and a set of constraints C if it replaces
some free variables in C by concrete types or numbers derived from the actual shapes and sizes of the
(concrete) buffers in M.

Definition 4 (Store-consistent substitution). A substitution σ is said to be consistent w.r.t. a store M and
C iff σ ⊆ unify(M

∣∣
dom(C), C)

Now we can define the following lemma that captures an important intuition. Note that it works in two
directions. Informally, the lemma teaches us that we may replace a shape variable or size by the concrete
value it will get when a memory is supplied without disturbing the result of validate⋆ (⇒). Interestingly, we
may also apply in it the opposite direction. We may replace concrete shapes and numbers in the constraints
C1 by variables as long as these variables will be filled in with the same value when validated with M and
Ct1.

Lemma 3 (Validation is preserved under store consistent substitution). For any substitution σ consistent
with M and C1, and any B1 such that FV (B1) ⊆ FV (C1):

B = validate⋆(M, B1|C1 , T1, . . . , Tn) ⇐⇒ B = validate⋆(M, σ (B1|C1) , T1, . . . , Tn)

Proof. By induction on n, see Appendix B.4 on page 46.

25

6.3. Progress

To prove progress of our language we need to show that our program is either a value, or a step can be
taken. It suffices to show that we can always execute a step at the front of our work list (captured by Ewl).
Note that we need the (prog . . .) construct to do this, as it contains the memory needed to evaluate calls
and retrives. Using Ewl simplifies the induction needed to prove progress for (letB . . .) constructs. The
special case of Ewl = · gives us preservation for the full language.

Lemma 4 (Progress of work lists). For any wl such that

• ∅ | A ⊢p wl : BT |CT and

• ∃B.B = validate
(
MB , BT |CT

)
it holds that either

• ∃wl′.(main (prog A Ewl[wl]) ME) ⇝p (main (prog A Ewl[wl
′]) ME) for any Ewl (“a step can

be taken”) or

• wl = ((bufS1[k1]
v), . . . , (bufSn[kn]

v)) (“wl is a value”)

Proof. By induction on the typing derivation, see Appendix B.8 on page 57.

Lemma 5 (Progress). For any run configuration (main p M) with (main p M) ⊢ B it holds that there
is a p′ such that (main p M) ⇝p (main p′ M) or p is an value program

Proof. (main p M) ⊢ B could only have been derived by TP-Main, TP-Validate and TP-Prog as
follows:

TP-Main

TP-Prog
∀di ∈ A.⊢a di : T ∅ | A ⊢p wl : BT |CT

Γ | ∅ ⊢p (prog A wl) : BT |CT

FV (B) ⊆ FV (CT) dom(CT) ⊆ dom(M) σ = unify
(
M
∣∣
dom(CT)

, CT
)

σ(BT) = validate(M, BT |CT)
TP-Validate

⊢ (main (prog A wl) M) : σ(BT)

We now know that the (canonical) form of p must be (prog A wl). And we have that ∅ | A ⊢p wl : BT |CT
for some BT and CT such that B = unify(M, CT)(BT). We may apply lemma 4 and obtain that wl is either
a value (and p is a value program) or a step of the form below can be taken.

(main (prog A Ewl[wl]) M) ⇝p (main (prog A Ewl[wl
′]) M)

for any Ewl including “·”. This proves the lemma.

6.4. Preservation

Lemma 6 (Preservation). For any run configuration (main p M) it holds that if

• B = S[0 ∗ x+ n] (output has concrete type, n is fixed)

• ⊢ (main p M) : B

• (main p M) ⇝p (main p′ M)

then,

• ⊢ (main p′ M) : B

Proof. The full proof can be found in Appendix B.6 on page 50.

Intuitively, we can use lemma 3 to convince ourselves that preservation holds. As the full program is being
executed, the first items of the work list are replaced by concrete values. The reduction rules will work on

26

the value buffers, and the buffers will be of the right type. This is similar to how nested function application
works in other languages.

If there are (retrive . . .) constructs they must be at the start of a work list. Lemma 3 tells us that the
output buffer type B adheres to following rule, for any σ consistent with the store and the constraints.

B = validate⋆(M, B1|C1 , T1, . . . , Tn) =⇒ B = validate⋆(M, σ (B1|C1) , T1, . . . , Tn)

Let us assume that the work list starts with (retrive x), which would be typed X[nx]|{x 7→ X[nx]} .
Now take a memory M that satisfies the left hand side of the implication above. Any store consistent
substitution replaces some shape variables in B1|C1 by concrete values in accordance with the memory. If
M[x] = int[3], a store consistent unifier would be σ = ⟨X/int⟩ ⟨λ(a · nx + b)/(0 · l + 3)⟩. The right-hand
side of the implication above now becomes:

B = validate⋆(M, (int[3]|{x 7→ int[3]}) , T1, . . . , Tn)

If we look at TP-Validate, we see that the constraints are used for two things: (a) validate if the memory
adheres to them (b) fill in type variables in the output buffer type based in the unification of the final
and the M. Because the program successfully type checked before, we know that both conditions are true.
Applying σ to C1 fills in some of the free variables in C1 but does not change the result of validate. We simply
applied a part if the substitution validate would apply anyway. In fact, validate derives no substitutions from
concrete requirements in C1, so we may drop these. This is not a problem because (a) was already fulfilled
for this memory. We arrive at: B = validate⋆(M, (int[3]|∅) , T1, . . . , Tn). The type is preserved.

6.5. Soundness

Combining the progress lemma with the preservation lemma gives us following theorem.

Theorem 7. For any run configuration (main p M) it holds that if

• ∀B ∈ B. ∃S. ∃k ∈ Z. B = S[0 ∗ x+ k] and (k fixed)

• ⊢ (main p M) : B

then, there exists a tuple of value buffers Dv of type B such that

(main p M) ⇝p
∗ (main (prog A Dv) M)

Put informally, starting a program with a memory that adheres to the constraints derived for the program,
will eventually6 result in (main (prog A Dv)). And it will be the case that the type of Dv will be the
type B which we got by typing the program before execution.

6.6. Practical Implications

The soundness theorem above indeed ensures that we will get an output of the expected shape and size if
we run our program. Nevertheless, it is possible that some buffers in the program get a negative size during
execution. This may for example happen if we supply a int[5] buffer to a A[n] _ A[n− 9] shaper. At first
sight this might seem to be a counterexample for soundness. But this is not the case. The result of our
example will be a int[−4] buffer which we write as (bufint[−4]). This is a valid expression in our language,
typed int[−4] by TM-Buffer in figure A.13, because the ranges 0, . . . ,−4 and e0, . . . , e−4 are empty.
Both the typing and reduction rules of mappers, shapers and reducers can handle negative buffer sizes. The
(index . . .) construct executed on buffers of negative size will always be resolved by E-IndexOutBounds.

6All of the constructs in Gaiwan are guaranteed to terminate, so a result will be reached. Proof can be made by induction
on the worklists.

27

We will thus only read zeros from these buffers, this is an appropriate value for reading outside the bounds
of a buffer when using techniques like sliding windows.

The implementation of Gaiwan can issue a warning to the users if a buffer’s size will become negative during
the execution. We can detect this when we compute the concrete sizes of the buffers will be using for
execution by filling in the holes in our program. If a negative buffer size crops up, we can then inform the
user about where in the program this occurs.

7. Evaluator

Gaiwan’s evaluator is built in a modular way and consists of three parts: a static analyzer, an intermediate
code generator and an executor. The static analyzer validates the syntax and types of the program. Its result
is a set of constraints and a typed program with types that may refer to the variables in the constraints.
Our intermediate code generator then transforms the typed program into a series of typed execution steps,
which again may refer to shape and size variables in the constraints. The intermediate code is identical
for every execution of the program, regardless of the input size or shapes. To speed up evaluation of the
program for different data sets, we may store the intermediate code. With a concrete memory that adheres
to the constraints, we can ask an executor to compute the result. The executor generates concrete code for
a targeted platform, such as OpenCL or CUDA, and executes it. Apart from running the code on a GPU,
an executor could also be used to generate an SVG schematic of the program’s execution.

7.1. Static Analyzer

To validate a program we first type the abstractions and then validate the coordination plan. Abstractions
always have a simple transformation type with no constraints (B _ B|∅). They can be independently
validated. With this we can type the coordination plan.

The coordination plan is typed in two passes. First, we recursively type the program. Each base part
of the plan gets a type and a set of constraints. These are then combined to type any composite step
(such as letB). Once an entire sequence of steps is typed, the second pass pushes the obtained information
back into the types of the constituents. For example, if a merged work item has the transformation type
(C × int)[2n] _ C[n] obtained from combining A[m] _ A[3m + 1] and (B × int)[6k + 1] _ B[k]. The
constituents are now retyped (C × int)[2n] _ (C × int)[6n+ 1] and (C × int)[6n+ 1] _ C[n]. Individual
mappers, shapers and reducers also get an updated type. By doing this, we can quickly derive the final
types of each piece of the program once the memory is supplied in the execution phase.

7.2. Intermediate Code Generator

We cannot generate concrete executable code without knowing the size and shape of the input. We can,
however, already generate intermediate code that describes the steps a GPU should perform to execute the
program once these details are known. Steps include allocating buffers, reading input data into buffers,
extracting output data from buffers, creating kernels7 and executing them. A call to a shaper of type
(A[n], B[n]) _ A[n]|∅ could, for example, be implemented as a kernel with three buffer arguments: two
input buffers and one output buffer. The list of steps we generate in this phase ensures that the required
buffers are allocated and filled before the kernel is called and that the data of the result buffer is extracted
afterwards. If letB bindings are used, the intermediate code will derive the value of the binding before
executing its body. The intermediate code generator queries the selected executor to get hints on what
optimizations it may carry out. This way the intermediate code may be instructed not to use certain
features that are not present on all platforms (e.g. global barriers). As a consequence, the generated
intermediate code only works for the executor it was generated for.

7A kernel is a routine that can be invoked on the GPU by OpenCL. It can interact with the buffers given to it as arguments.

28

and then → mapper reducer shaper
mapper chain rewrite access concertize
reducer keep 2nd reducer becomes mapper concertize
shaper rewrite access rewrite access chain

Table 3: Equational reasoning on transformations. This table shows what can be done when one transformation type (left) is
followed by an other (top).

7.2.1. Equational Reasoning

If there are multiple work items, there may be multiple kernels. Because there is an overhead to calling
and creating kernels, we try to fuse subsequent steps by using equational reasoning[16]. Table 3 summarizes
the possible combinations and how we deal with them in a datarace-free way. We highlight some of the
combinations below.

Mapper-Mapper. Whenever two mappers are executed after each other they can be combined into a single
mapper that executes both tasks. If a first mapper multiplies by 14 and the second mapper multiplies by
3, we may use a mapper that simply multiplies by 42 once. In the case that a mapper returns a tuple, we
have a formula for every entry of the tuple. We can then look at the tuple access in the second mapper and
do the composition at that point.

Shaper-Mapper, Shaper-Reducer and Shaper-Shaper. Executing any transformation after a shaper can be
reformulated by changing the access pattern to access a different value. The fused transformations are of
the same kind as the last transformation.

Mapper-Shaper. We do not have a generally applicable optimization for applying a shaper after a mapper.
In theory, we could substitute the index in the mapper for the new value that would be computed by the
shaper. The resulting transformation is not a real mapper nor a shaper (nor a reducer).

As a shaper may select the same value multiple times, fusing may lead to computing the same value multiple
times. Applying static analysis techniques to the body of the shaper could learn us if merging a mapper
and a shaper is useful on a case by case basis.

In our current implementation we determine the complexity8 of the mapper’s output. If the complexity is
high we concertize the result of the mapper and apply the shaper on the stored value. When the complexity
is low me merge the mapper and the shaper.

Associative Reducers. If there are data dependencies between the calls of a reducer, it must be executed
serially. Such dependencies may be inherent to the problem. Often however a reducer represents an associa-
tive operation, which can be sped up by using the tree-based reduction pattern described in section 2.2.2.
This pattern has a lower algorithmic complexity than the classic serial method, but requires more costly
operations such as multiple kernel calls or introducing barriers. The performance gains of a lower algorithmic
complexity outweigh the cost of these operations for sufficiently large inputs.

Gawain attempts to statically prove that the operation is associative by using a rewrite system. Although
this system may have false negatives, it is able to correctly detect common associative operations such as
addition of all elements.

7.2.2. Simplification and Common Sub-Expression Lifting

The fusing operations described above may lead to kernels with complex expressions in their body. As stated
before, a mapper following a shaper that creates tuples may for example only use a part of the tuple. The

8This value is the amount of leafs in the simplified abstract syntax tree of the expression describing the mappers output.

29

fused kernel may therefore contain sub-expressions like tuple(a,b)._1), which can be simplified to just a. To
keep the kernels as simple as possible, we simplify the expressions after every fusing operation.

We additionally look for common sub-expressions and extract these into a let binding. This reduces the
amount of duplicate computations, and further improves performance.

7.3. Executor

The intermediate code works for any memory that adheres to the constraints of the type system. Once
we have a concrete memory, we can derive the values of the shape and size variables mentioned in the
intermediate code. If we get a memory {a 7→ (bufint[4] 1 2 3 4)} for the constraints {a 7→ A[2n]}, we may
derive that A = int and n = 2. These values can then be filled in the intermediate code and execution can
start.

Our current implementation has an initial version of an OpenCL executor. This executor translates the
expression in the intermediate code into OpenCL kernels. Buffers are read from files, (retrive a) will read
the values from the file a.int.gw. Our executor takes care of setting up the GPU and loading the data and
the OpenCL kernels onto the device. Once these are loaded, the kernels are called in the order dictated by
the intermediate code.

With knowledge of the concrete types of the program we can carry out more optimizations and determine
the optimal way to store data. Our current implementation simply converts the intermediate code into
OpenCL without any additional OpenCL specific optimizations.

8. Evaluation

Our implementation of Gaiwan contains the full type system, and a prototype implementation of an OpenCL
executor. While the executor is not yet fully optimized for performance, it can execute any well typed Gaiwan
program (for valid inputs).

To evaluate our work we will showcase two usage examples and a benchmark. First we show how we can
use Gaiwan to analyze GPS traces (section 8.1). Then we take a closer look at the kernel generated for a
Gaiwan program that computes a dot product. Finally, we illustrate the scalability of Gaiwan with growing
program sizes, and we compare its performance to that of a hand optimized implementation of Bitonic Sort.

8.1. Usage Example: Analyzing GPS data

Gaiwan can be used to analyze time series data such as GPS traces. We show the start of a GPS data
set below. Each three consecutive numbers represent a single measurement of the longitude, latitude and
altitude at a moment in time. A new measurement is made every minute.

data=51.3463379, 4.2859038, 2.98, 51.3463377, 4.2859039, 47.939, 51.3463377, 4.2859039, 47.939, 51.3463376, 4.2859039, 47.969,

51.3463374, 4.285904, 47.989, 51.3463374, 4.285904, 47.989, 51.3463373, 4.285904, 48.009, 51.3463372, 4.2859041, 48.019,

51.3463372, 4.2859041, 48.019, 51.3463371, 4.2859041, 48.029, 51.346337, 4.2859042, 48.039, 51.346337, 4.2859042, 48.039,

51.346337, 4.2859042, 48.039, 51.3463369, 4.2859043, 48.039, 51.3463369, 4.2859043, 48.039, 51.3463369, 4.2859043, 48.039,

51.3463369, 4.2859043, 48.029,...

In this section we will show how we can use Gaiwan to determine the maximum distance traveled in any 3
minute interval. Additionally, we also want to determine the the highest reached altitude.

Let us first look at the simplest task: computing the maximal altitude. To do this we need to extract every
third number from the data set and then find the maximal value.

The former sub-task is a job for a shaper, one that will select every third element. Lines 2-3 in listing 7
fulfill this task. These lines define a shaper of type A[3n] _ A[n]. Conceptually, the body of the shaper
carries out out[i] = data[3*i+2], making the output a buffer of altitudes. We give our shaper a name, getAlt,
by wrapping it in an abstraction (lines 1-3).

30

1 abstraction getAlt (): A[3n] -> A[n]{
2 shaper(i:int , data:A[3n]): A[n]{
3 data [3*i+2] } }
4

5 abstraction findMax (): float[n] -> float[n] {
6 reducer(acc:float = -inf , distance:float) : float{
7 if(distance > acc){ distance }
8 else { acc } } }
9

10 abstraction analyze (): float[3n] -> float[n]{
11 shaper(i:int , data:A[3n]): (A, A)[n]{
12 (data[i*3+0], data[i*3+1]) } #
13 shaper(i:int , data:B[n+1]): B[n] {
14 (data[i], data[i+1]) } #
15 mapper(i:int , positions: ((float ,float),(float ,float))) : float {
16 // Haversine formula: two coordinates -> sphere distance
17 // implementaion in listing 11
18 } #
19 shaper(i:int , distances:C[n+2]):(C×C×C)[n] {
20 (distances[i], distances[i+1], distances[i+2]) } #
21 mapper(i:int , distances :(float×float×float)) : float # {
22 distances._1 + disances._2 + distances._3 }
23

24 (letB maxDist = ((retrive data) # (call analyze) # (call findMax)) in
25 (letB maxAlt = ((retrive data) # (call getAlt) # (call findMax)) in
26 (retrive maxDist maxAlt)))

Listing 7: A program computing the distance

Now, we still need to find the maximum value of our altitude buffer. Lines 6-8 in listing 7 define a reducer
of type float[n] _ float[1] that implements the required max transformation. The accumulator, acc is
initialized with 0. The body specifies that the accumulator should be updated with any larger value in the
input buffer. Eventually, the accumulator will hold the maximal altitude. The result of a reducer is a list
of length one containing the last accumulator value. We name this reducer findMax by wrapping it in an
abstraction (lines 5-8).

Given getAlt and findMax we can find the maximal altitude. To do this we use the following coordination
plan: (retrive data) #(call getAlt) #(call findMax). First we access our GPS-positions. With (retrive data) we
retrieve the coordinates. The output of that action is then provided to getAlt by using call. Finally, the
output of getAlt becomes the input of findMax by using a second call.

For our second part, we determine the maximal distance traveled over 3 minutes. To do this we sum the
distances between every three subsequent coordinates. This is done by a combination of multiple mappers
and shapers. The abstraction analyze groups these together. There are five steps. First, a shaper (lines
11-12) extracts the longitude and latitude, similar to how getAlt worked. Then, a second shaper (lines
13-14) takes every two subsequent coordinates (with overlap). The type of this shaper is B[n+ 1] _ B[n].
If we have a list of 10 coordinates (n+1) we will get 9 pairs of coordinates (n). The length reduces by one.
Third, we use a mapper that computes the sphere distance between two points using the Haversine formula.
Fourth, we combine every three subsequent distances with overlap in a tuple. Now we have an overlap of
two, so the list shortens by two. The type of the fourth step is thus: C[n + 2] _ (C × C × C)[n]. Finally,
we compute the sum of these three distances with a mapper.

With this abstraction, and the findMax from before, we can find our result with: (retrive data)#(call analyze)#(call findMax).

To get both results out of the GPU, we use letB to combine the results. On line 24 of listing 7 we assign
the name maxDist to the list of one element that contains the maximal distance. The result of the al-
titude coordination plan is stored in maxAlt on line 25. We use retrive to return both values by writing
(retrive maxDist maxAlt).

8.2. Usage Example: Dot Product

The hyper parallel architecture of a GPU lends itself well to execution of mathematical operations such the
dot product. A dot product computes the sum of the pair-wise multiplication of two vectors of equal length.

31

1 abstraction dot_product () {
2 shaper join(i,a:C[n],b:C[n]) : tuple(C,C)[n] {
3 tuple(a[i],b[i])
4 } #
5 mapper mul(i, a:tuple(int ,int)) : int {
6 a[[0]]*a[[1]]
7 } #
8 reducer sum(i,acc: int , d : int) : int (0){
9 d + acc

10 }
11 }
12 (retrive a b) # dot_product ()

Listing 8: A program computing the dot product of two vectors a and b

1 void kernel kernel0(global int int_array0[LEN_123_1_0],
2 global int int_array1[LEN_123_1_0],
3 global uint* intermediateLEN ,
4 global int* intermediate){
5 int int_i = 2* get_global_id (0);
6 int int_acc = 0;
7 int_acc = (((int_array0)[(int_i)])*((int_array1)[(int_i)]))+(int_acc);
8

9 int_i ++;
10 if(int_i < LEN_123_1_0){
11 int_acc = (((int_array0)[(int_i)])*((int_array1)[(int_i)]))+(int_acc);
12

13 }
14 intermediate[get_global_id (0)] = int_acc;
15

16 };
17 void kernel kernel1(global int int_array2[LEN_123_0_1],
18 global uint* stepsizePtr ,
19 global uint* intermediateLEN ,
20 global int* intermediate){
21 int stepsize = *stepsizePtr;
22 int int_i = (2* get_global_id (0))* stepsize;
23 if(int_i + stepsize < *intermediateLEN){
24 int int_v1 = intermediate[int_i];
25 int int_v2 = intermediate[int_i+stepsize];
26 int int_acc; int_acc = (int_v2)+(int_v1);
27 intermediate[int_i] = int_acc;
28

29 if(int_i ==0){
30 int_array2[int_i] = int_acc;
31 }
32 }
33 };

Listing 9: The generated kernels for a Gaiwan program computing the dot product. With manually added white space to aid
understanding.

The Gaiwan implementation of this operation features all our transformations: a mapper, a sharper and a
reducer.

In Gaiwan this mathematical operation is implemented as shown in listing 8. At the bottom (line 13) we
first fetch two input buffers named a and b and pass them on to the abstraction dot product defined on
lines 1-11. This abstraction consists of three steps. First, we use a shaper to combine the i-th values of the
input vectors into a pair (lines 2-3). The type of the shaper guarantees that both input buffers are of the
same size and that the output is buffer of pairs that is as long as the input. Second, each pair is processed
by a mapper that multiplies the pair’s values (lines 5-7). The resulting buffer has the same length as the
input buffer because a mapper does not impact buffer lengths. Finally, a reducer (lines 8-10) sums the
products yielding the final dot product. It combines all elements of the input buffer into one value. As the
combination that is used here is assosiative (a simple addition), Gaiwan will use with the tree-like reduction
pattern (section 2.2.2).

The OpenCL kernels Gaiwan generates for this example are shown in listing 9. There are two kernels, which
we explain in the rest of this section. Although the generated kernels are not yet fully optimized, we will

32

show that thanks to equational reasoning many intermediate steps are prevented. To keep the explanation
brief we assume the reader has some familiarity with openCL or GPU programming. Readers unfamiliar
with this may want to jump ahead to section 8.3.

Kernel functions are executed in parallel as many times as output elements are needed9. Each parallel
execution has a numeric identifier it can obtain by calling the OpenCL function get_global_id(0). This identifier
allows each parallel execution to determine what part of a task is must carry out.

The first kernel is defined on lines 1 to 16, it computes the multiplication of the i-th elements of both
input buffers (int_array0 and int_array1) and sums the result as prescribed by the reducer. Rather than simply
computing the multiplication and storing the result in a buffer of the same lenght, the two multiplication
results are combined, and the result is stored in a buffer named intermediate that is just half the size of the
original buffer. In effect, the kernel does the shapper, mapper and reducer all at the same time thanks to
equational reasoning (see section 7.2.1). This is most clearly visible on lines 7 and 11 highlight. These lines
both have the form d + acc (the body of the original reducer). However, instead of d we have a piece of code
of the form a[[0]]*a[[1]] (the body of the mapper). The tuple values of the mapper have been translated into
direct accesses into the buffer as dictated by our shaper. On line 14 int_acc contains the result of applying
the mapper, shaper and reducer to the elements at index 2i and 2i + 1 of the input buffers. This result is
stored in the i-th element of the intermediate buffer.

The second kernel (lines 17-33) combines the accumulator results stored at index 2 · i · s and 2 · (i + 1) · s
and places the result at position 2 · i · s. By doing this repeatedly with s assigned to increasing powers of
two (1,2,4,8,16,...) we will have stored the final reduction value at position 0 of the intermediate vector.
This value is then copied to the output buffer (line 30). Combining two values is done with the body of the
reducer as shown on line 26. The rest of the function prevents that we read values out of bounds.

8.3. Performance Evaluation: Bitonic Sort

In this section we will show that our executor can handle larger programs. To this end, we will choose an
artificial Gaiwan program that we can easily make more complex in terms of program size: Bitonic Sort.
This parallel sorting algorithm requires O(n2) parallel steps to sort 2n elements. Gaiwan was designed for
programs where the amount of transformations does not change with varying input sizes. Although outside
our intended use cases, Bitonic Sort does enable us to demonstrate the performance impact of executing
larger programs with more transformation. An additional benefit of using Bitonic Sort is that OpenCL
implementations of it are readily available in hand optimized form.

Bitonic Sorting repeatedly combines bitonic sequences to arrive at a monotonically increasing sequence. A
bitonic sequence is a sequence of values that first increases monotonically and then decreases monotonically10.
To sort 2n values, the process works in n stages. Figure 11 shows a schematic of the Bitonic Sort principle
for 16 values (4 stages). Each element of the input is assigned to a horizontal line on the left side of the
image. The first stage makes bitonic sequences of length four, two increasing values, two decreasing values.
Dark blue regions in the image result in increasing values, light green in decreasing values. Every next stage
transforms a bitonic sequences into a monotonic sequence in such a way that every two subsequent results
are bitonic. Transforming a bitonic sequence is done in i steps in the i-th stage (red blocks in the image
containing arrows). Arrows between two lines swap the values such that the arrow points to the highest
value. The first of these steps combines 2i values (2i−1 arrows), the second 2i−1, and so on. The last stage
transforms a bitonic sequence of size 2n into a monotonically increasing sequence of size 2n, the result.

Listing 10 shows a Gaiwan implementation of Bitonic Sort for 230 values. The coordination plan on the
bottom (lines 28-33) reflects the steps we have described above. First we read the input buffer on line 28.
Then, we execute two nested loops11, one for the stages and one for the steps in the stages. The individual

9Limited by number of parallel entities available on the GPU
10For completeness, a bitonic sequence may also be a circular shift of such a sequence
11Loops are syntactic sugar for repeating steps in the coordination plan, Appendix D.1 described this construct formally

33

Figure 11: A schematic of a Bitonic Sorter for 16 values. Each element of the input is assigned to a horizontal line on the left
side of the image. Arrows between to lines swap the values such that the arrow points to the highest value. The elements of
the buffer 1 be sorted on the right of the image. Image adapted from Wikimedia Commons.

steps are implemented in the bitonic step abstraction. It takes two arguments, the stage number and
the number of arrows per block (red boxes in figure 11). This abstraction first transforms the data into
a list of arrows (tuples) with a shaper. Each tuple of two elements is then sorted in the mapper on lines
9-15. Depending on the index of the arrow, the values are sorted increasingly or decreasingly. Now that our
arrows are sorted, we need to decompose them. Lines 16 to 25 define a shaper that does this. For every
output index i, the corresponding arrow is determined, and the correct part of it is extracted.

Note that the program must be altered to process different buffer sizes, as the number of stages changes for
different input sizes. The type of the bitonic step operation is int[2n] _ int[2n], Gaiwan enforces that
the input buffer has an even size. This is indeed all that is needed for this abstraction to work, bitonic step

also works on an int[10] buffer even though 10 is not a power of two. The semantics that the size of the
input must be a power of two cannot (yet) be expressed in Gaiwan. Here, we use Bitonic Sort to inspect
Gaiwan’s behavior when executing large programs. In future work we will also allow for inspect buffer
lengths in the coordination plan such that the program does not need to be altered.

An implementation of Bitonic Sort in OpenCL can be found on the website of Intel12. It is not contained
in this document due to copyright restrictions. The handwritten OpenCL kernel code is 46 lines long after
removing all comments and empty lines13. The C++ code loading the kernel and sending the data to the
GPU is another 40 lines14. Both the C++ and OpenCL code are complex and feature things like bit masks,
bit operations, buffer alignment computations, memory pointer types, computation contexts and queues.
These complexities are not inherent to the bitonic sort problem, they exist only to exploit certain hardware
characteristics of the GPU. The actual logic of the bitonic sort is even split over two files, the C++ file and
the OpenCL kernel file. By comparison, our Gaiwan program is easier to understand, is contained in one
file, and can be explained in a paragraph, as we did above.

We use Gaiwan generated OpenCL program and Intel’s handwritten OpenCL program to sort buffers of
32 bit integers with lengths up to 230. These programs run on an OpenCL C version 1.2 capable GPU,
the NVIDIA A100. The log-log graph in Figure 12 shows the execution times of both implementations as
solid lines. The measured times include the time taken to upload the data buffer and OpenCL program
to the GPU and to run the kernels. We see that the OpenCL code generated by Gaiwan is much slower
than the handwritten OpenCL code of Intel. We see that this overhead decreases to 217 times for buffers

12https://www.intel.com/content/dam/develop/public/us/en/downloads/intel ocl bitonic sort.zip
13Lines only including brackets and white space are also not counted. In total 64 lines were not counted.
14Excluding empty lines, lines that only contain brackets, error handling and argument parsing code. 289 lines were not

counted.

34

https://commons.wikimedia.org/w/index.php?title=File:BitonicSort1.svg&oldid=492075450
https://web.archive.org/web/20220503092547/https://www.intel.com/content/dam/develop/public/us/en/downloads/intel_ocl_bitonic_sort.zip

1 abstraction bitonic_step(stage:int , arrPerBlock:int): int[2m] -> int[2m] {
2 shaper(i:int ,d:C[2*n]) : tuple(C,C)[n] { -- split in tuples repesening arrows
3 let blockid = i/arrPerBlock in
4 let blockstart = blockid * arrPerBlock * 2 in
5 let blockoffset = i % arrPerBlock in
6 let pos = blockstart + blockoffset in
7 tuple(d[pos],d[pos+arrPerBlock])
8 } #
9 mapper(i:int , a:(int × int)) : (int × int) { -- swap if needed

10 if((i%(2^(stage +1))) < (2^ stage)){ -- upper half (increasing sort)
11 if(a[[0]] < a[[1]]) {a} else {tuple(a._2 ,a._1)}
12 } else { -- lower half (decreasing sort)
13 if(a[[0]] < a[[1]]) {tuple(a._2,a._1)} else {a}
14 }
15 } #
16 shaper(i:int ,d:(B × B)[n]) : B[2n] { -- take arrows apart
17 let arrowBlock = i/(2* arrPerBlock) in
18 let arrowBlockStart = arrowBlock * arrPerBlock in
19 let currentArrow = arrowBlockStart + (i % arrPerBlock) in
20 if(arrowBlockStart *2+ arrPerBlock < i+1){
21 d[currentArrow]._1
22 }else{
23 d[currentArrow]._2
24 }
25 }
26 }
27

28 (retrive b) #
29 for stage in 0..(30 -1) {
30 for step in 0.. stage {
31 (call bitonic_step stage (2^(stage - step)))
32 }
33 }

Listing 10: An implementation of Bitonic Sort in Gaiwan

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230

100

101

102

103

104

105

106

Number of input elements

E
x
ec
u
ti
on

ti
m
e
(m

s)

GPU time OpenCL
GPU time Gaiwan
Full time Gaiwan

Figure 12: Log-log plot of the execution time of the OpenCL actions of Gaiwan (solid,circle marks) and the hand written Intel
OpenCL code (solid, square marks). This measurements includes sending the data buffer and the OpenCL program to the
GPU The dashed line represents the full execution time of Gaiwan, which additionally includes the time to type check and
optimize the code.

35

of size 230. It must be noted that at the time of writing, the loops in the Gaiwan program are unrolled. As
a consequence, the size of the program and the number of kernels grows quadraticly with the logarithm of
the input size. This has a significant impact on the performance. The GPU needs to process many different
kernels, instead of only one. This explains the discrepancy in speed. In future work we plan to address this
by allowing kernels that can be parameterized.

The full execution time of the Gaiwan program including type checking, generating an internal representation
of the program, optimizing that representation and converting it to OpenCL is shown as a dashed line in
Figure 12. As the input size grows, the program grows, and the time taken to optimize it increases as well.
The full results of the benchmarks can be found in Appendix E on page 61.

9. Related Work

The work we presented here is part of two domains: on the one hand it exists in the realm of GPU
programming and on the other hand our type system is related to dependent typing.

The most important feature of Gaiwan is its size polymorphic type system. It allows users to define a
function that describes the change in length of a buffer when a transformation is applied. We can get similar
functionality by using dependent type systems such as the one featured in Idris[17]. In these type systems
we may define a datatype Buffer a b S to represent a Gaiwan buffer type S[an + b]. Transformations may
then be represented as a function Buffer a1 b1 → Buffer a2 b2. We may combine such functions by using
a function that converts the types. Our novel size-polymorphic type system is thus likely implementable in
Idris. A sketch of such an implementation can be found in Appendix F on page page 62. Gaiwan could have
been implemented as an Idris library, we chose to implement Gaiwan in Haskell. Without a Gaiwan-like
library the programmer is required to fulfill the proof obligations manually. This means that when they
create a function of type Buffer a1 b1 → Buffer a2 b2 themselves, they must also write a proof for the
compiler that their implementation indeed exhibits the declared effect. We chose to implement Gaiwan in
Haskell.

Hughes et al. [18] introduced “sized types” to encode the effects of streams in reactive systems with the
end goal of proving termination. Their type system makes users express the effect that their operations
have on the size of the output as a function. The type checker then validates that these types are correct.
Annotating more complex functions with “size types ” can be difficult if these combine multiple functions
that all have their own size types. As opposed to this, Gaiwan only requires type annotations at the lowest
level. At this level, the types have a meaning chosen by the developer directly (e.g. how many output
elements should be created per input element of a shaper). The effects of larger parts of the program are
automatically inferred by Gaiwan. Additionally, all operations in our system are guaranteed to terminate.

Accelerate[4] is a programming language embedded in Haskell that aims to speed up array computations by
using the GPU. Similar to our work, they allow users to declare the shape of the data they are working on.
They even allow users to specify that they are working on an n-dimensional matrix that has different lengths
along every axis. As with Gaiwan, multiple buffers can be combined with various operators. Accelerate will
automatically derive the size of the output at Runtime. Gaiwan derives constraints on the input buffers
and gives a formula describing the length of the output buffer during typing. Additionally, Gaiwan informs
the user about the size of the input that is required for the program to work. This reduces the chance of
unexpected behavior that may occur when buffers of unequal size are zipped, for example.

StreamIt (Software Pipelined Execution of Stream Programs on GPUs) is a programming model that allows
users to specify data transformations in terms of so-called filters[6]. Each filter can pop() one or more
elements from the input, compute a value and push() that value to the output. There are also provisions to
have a peek() at the elements that come next without needing to pop them. In StreamIt, the developer must
set a push and pop data rate: the amount of elements that are pushed and poppeded (or peeked) in each
iteration. Multiple filters can be composed in a pipeline, split-join or feedback loop. These composites can
be nested but every construct has at most one input and one output. Udupa et al.[7] adapted the StreamIt

36

compiler to work for GPUs. They use the specified data rate to compute the ideal size for buffers and to
cleverly coalesce memory access. Gaiwan’s transformations are similar to StreamIt’s filters. While StreamIt’s
filters can only access the next element in the data, Gaiwan’s shapers provides access to all elements in the
buffer. The data rates given on each filter correspond to the transformation type A[rpopn] _ B[rpushn] in
Gawain, if there are no peeks. Gaiwan gives users more fine-grained control over which data elements they
want to inspect and allows any affine function to be used as size. The type system of Gaiwan also informs
the developer of the size of the input the program expects. Additionally, Gaiwan has provisions for working
with multiple named buffers while StreamIt only works with one data stream.

Halide[10] is a programming language for performing high performance image processing on GPUs[10]. Their
central insight is that there must be a separation of concerns between what is computed and the ordering
of these computations. The former concern is expressed in a simple language for defining the algorithm.
The latter part is expressed in a language that allows the specification of access patterns (like row-major vs
column-major and parallel vs vectorized). Experts can use Halide to iteratively look for the best ordering
by altering only that part and leaving the what intact. In Gaiwan we have made the same separation of
concerns by only providing means to express what is computed. The ordering is derived automatically using
various heuristics. By separating out shapers as a primitive, we have a good view on the access patterns
to derive a good ordering. The ordering is thus defined in the implementation of Gaiwan itself. We have
made the choice to disallow specifying the order because we Gaiwan is aimed at non-expert GPU users.
Gaiwan’s main contribution is its advanced size-polymorphic type system, Halide features a more standard
type system.

The LIFT-project[9, 19] aims to create “performance-portable” code for heterogeneous programming envi-
ronments, such as the ones with GPUs. They noticed that GPU code that is optimal for one device may
have bad performance on another device. The LIFT language is a high level functional programming lan-
guage with functions like map and reduce. These allow users to specify the operations they want to execute
on their input. A rewrite system is the used to transform the program to many possible implementations
in LIFT’s high-level intermediate representation (IR). In turn each IR program is rewritten to all possible
OpenCL implementations. Then a heuristic process selects the best of the implementations. Similar to
Gaiwan, the LIFT IR can derive the length of buffers that are divided into a number of parts, they even
allow buffer length defined as an expression in multiple variables. Unfortunately, LIFT cannot inform the
developer about the broadest acceptable range of input sizes , like Gaiwan does, it can only accept or reject
specific sizes [19].

Futhark[20] is a functional data-parallel array language for OpenCL. It aims to seek a middle ground between
functional and imperative languages. The language supports writing the size of buffers in signatures of
functions that operate on arrays. The size written in the return type will be dynamically checked at runtime.
Unfortunately, Futhark only supports simple names or constants as array sizes, they do not support size
expressions such as 2n+ 1.

Chapel[8] aims to generalize parallel programming to make it portable and to easily scalability while main-
taining simple code. The language has various convenient constructs to express both task and data paral-
lelism. Chapel 1.25 has preliminary support for GPUs of the NVIDIA brand with CUDA. The language has
a partitioned global address space, allowing users and the language itself to decide where to store data. This
is especially useful to experts in the context of GPU programming as GPUs have many different memories
that work at very different speeds and are accessible to different processing units. At the time of writing,
users do not yet have full control of the exact place where data will reside in a GPU with Chapel, but they
can specify that certain buffers should exist on the GPU. Gaiwan is aimed at non-expert GPU program-
mers, therefore we abstract over the different memory layouts and the allocation of buffers required to store
intermediate results.

NVIDIA, a company that designs and sells GPU hardware, has various projects to help developers get the
most our of their hardware. Their Trust[21] library provides various functions for carrying out common
GPU tasks efficiently with C++ CUDA. They also have the NOVA[22] language and compiler. Like the

37

LIFT project, NOVA provides various high-level functional programming constructs such as map and reduce.
These constructs can then be compiled to run efficiently on NVidia GPUs. Unfortunately, both frameworks
require knowledge of the input sizes beforehand.

The MapReduce[11] programming model also features “mapper” and “reducers”. The main difference with
Gaiwan is that here, they may produce any number of outputs depending on the input values. This is
inconvenient for GPUs as they do not feature dynamically sized arrays. He et al. overcomes this issue with
a two-pass system that brings the MapReduce model to GPUs [23]. Their first pass executes a mapper or
reducer and stores the required output size rather than the actual output. Then they allocate buffers of the
computed sizes and start the second pass which runs the operation anew and stores the output. Gaiwan
offers a more structured type system that allows programmer to specify beforehand the number of output
elements per input element. This allows us to execute our operations in one pass.

GPUs are often used for machine learning, especially for deep neural networks [24]. As the formulae used
in neural nets are typically simple, and allow heavy optimization by using polyhedral compilation[25, 26].
Polyhedral compilation restructures loop nests for optimal performance. One example of the application of
this technique can be found in the work on Tensor Comprehensions by Vasilache et al.[25]. Gaiwan may
also use polyhedral compilation in the future to optimize the generated code once we know the size of the
input.

10. Future Work

The design of Gaiwan forces users to separate data access from computation. This helps users understand
what data is needed for each step by explicitly writing it down. This separation is also useful to language
implementers because they no longer needs to extract access patterns to find performance optimization
possibilities. In future iterations of Gaiwan we will shift our focus from the formalization of the type system
to efficient implementation. We also aim to generate parameterize kernels, which will improve the speed of
loops in the coordination plan by reducing the total amount of kernels.

The size-polymorphic type system of Gaiwan paves the way for research toward GPU resource tracking[27].
We could use this to find the optimal size to split data at and to determine if we need to run the program
multiple times to not exceed the memory limit of the current card.

Visualization of programs can greatly aid the understanding of the execution and help thwart bugs [28].
The modular design of our evaluator allows generating images that represent the execution. With this, users
could visualize the execution on a specific buffer to find errors in their programs.

Gaiwan explores how to create transformations that are size polymorphic. The coordination plan uses this
polymorphism by chaining operations. Sometimes, however, it might also be useful for the coordination
plan to directly access the length of a buffer to select what transformations to execute. Further research is
needed to encode this non-polymorphic use buffer sizes in the coordination plan.

11. Conclusion

In this paper we presented the size-polymorphic type system of Gaiwan, a programming language aimed at
non-expert GPGPU programmers. Existing GPU languages force developers to divide their data into blocks
for processing. These sizes are often unrelated to the problem at hand. Unfortunately, these sizes do have
a significant impact on the performance of a GPU program [3].

With Gaiwan, programmers only need to specify buffer sizes relevant to their problem. They can declare
the effects of a transformation on the sizes of buffers by using affine functions in one variable. This gives
them the flexibility of using the same program for analyzing both a hundred data points and millions of data
points. The type system ensures that the size of the supplied input is in the image of the affine function
set as expected input size. Additionally, even without providing input data, our type system provides a set

38

of constraints on the input. When multiple input buffers are combined in the program, the constraints
reflect this. For example, two input buffers that must have related lengths will share the variable in their
affine size functions The developer can rest assured that any input that adheres to the constraints will work.
Even more, without running the program they can predict the output size.

The parametricity of the types is not limited to sizes. Shape variables can be used to abstract over the
shape of the elements in a buffer as well. This further facilitates reuse of created abstractions. Again, even
without knowing what the input will be, the type system can prescribe constraints for the shape of elements
in the input buffers.

Gaiwan features three core building blocks for specifying transformations, all with data race free semantics.
Mappers apply the same function to every element in a buffer. They preserve the length of the buffer. By
design, mappers can only access one element of the input to compute an element of the output, reducing
data dependencies and enabling more parallelism. Reducers fold all values of a buffer into an accumulator
with an associative operation. The result of these operations is a buffer of length one containing the final
accumulator value. Reducers can be made parallel by executing them in a tree structure. Finally, shapers
reshape one or more buffers to create a new output buffer without inspecting the values of these buffers.
These are the only operations that can change buffer lengths. Length changes are entirely driven by the
type annotations on the shaper. By prohibiting value inspection, shapers have predictable access patterns
that can be exploited to improve performance.

Transformations are enacted on the input in the order dictated by a coordination plan. When multiple
transformations are applied (call) to buffers, the output of the previous transformation becomes the input
to the next. This plan specifies which named buffers to read from the environment (retrive). New named
buffers can also be introduced in the scope of a letB binding.

As previously stated, the type system validates the coordination plan and the definitions of the transfor-
mations. The output is a list of constraints and an output buffer type. As long as no input memory is
given, the output buffer type may contain free variables referring to free variables in the constraints. Once
a concrete memory is given, the variables in the constraints can be filled in. If these variables are also used
in the output buffer type, we can substitute them to obtain the concrete result buffer type of program. We
have proved that our main contribution, the size-polymorphic type system and the accompanying unification
system are sound.

To evaluate our work we show a two usage examples, and we perform a small benchmark. Gaiwan is not yet
optimized for performance, it is slower than a hand optimized implementation of Bitonic Sort, however its
code is much more simple and does not contain complicated constructs (bitmasks, buffer alignment, memory
types, ...) which are device dependent. The language constructs in Gaiwan minimize data dependencies
and facilitate easy determination of accessed values. In future work, we aim to leverage this information to
optimize Gaiwan’s performance.

Acknowledgments

Robbert Gurdeep Singh received funding from the Special Research Fund (BOF) of Ghent University under
grant number BOF18/DOC/327. We were gracefully allowed to use the A100 of IMEC vzw to run our
experiments. We would like to thank Toon Bayens for helping us efficiently solve the constraints on buffer
sizes.

References

[1] B. Gaster, L. Howes, D. R. Kaeli, P. Mistry, D. Schaa, Heterogeneous Computing with OpenCL, 1st Edition, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2011.

[2] J. Cheng, M. Grossman, T. McKercher, Professional CUDA C Programming, John Wiley & Sons, 2014, google-Books-ID:
q3DvBQAAQBAJ.

39

[3] R. Alur, J. Devietti, N. Singhania, Block-Size Independence for GPU Programs, in: A. Podelski (Ed.), Static Analysis,
Vol. 11002, Springer International Publishing, Cham, 2018, pp. 107–126, series Title: Lecture Notes in Computer Science.
doi:10.1007/978-3-319-99725-4_9.
URL http://link.springer.com/10.1007/978-3-319-99725-4_9

[4] R. Clifton-Everest, T. L. McDonell, M. M. T. Chakravarty, G. Keller, Streaming irregular arrays, in: Proceedings of the
10th ACM SIGPLAN International Symposium on Haskell, ACM, Oxford UK, 2017, pp. 174–185. doi:10.1145/3122955.
3122971.
URL https://dl.acm.org/doi/10.1145/3122955.3122971

[5] F. M. Madsen, R. Clifton-Everest, M. M. T. Chakravarty, G. Keller, Functional Array Streams, in: FHPC ’15: The 4th
ACM SIGPLAN Workshop on Functional High-Performance Computing, ACM, 2015, pp. 23–34.

[6] W. Thies, M. Karczmarek, S. Amarasinghe, StreamIt: A Language for Streaming Applications, in: G. Goos, J. Hartmanis,
J. van Leeuwen, R. N. Horspool (Eds.), Compiler Construction, Vol. 2304, Springer Berlin Heidelberg, Berlin, Heidelberg,
2002, pp. 179–196, series Title: Lecture Notes in Computer Science. doi:10.1007/3-540-45937-5_14.
URL http://link.springer.com/10.1007/3-540-45937-5_14

[7] A. Udupa, R. Govindarajan, M. J. Thazhuthaveetil, Software Pipelined Execution of Stream Programs on GPUs, in:
2009 International Symposium on Code Generation and Optimization, IEEE, Seattle, WA, USA, 2009, pp. 200–209.
doi:10.1109/CGO.2009.20.
URL http://ieeexplore.ieee.org/document/4907664/

[8] T. Carneiro, N. Melab, A. Hayashi, V. Sarkar, Towards Chapel-based Exascale Tree Search Algorithms: dealing with
multiple GPU accelerators, in: HPCS 2020 - The 18th International Conference on High Performance Computing &
Simulation, Proceedings of HPCS 2020 - The 18th International Conference on High Performance Computing & Simulation,
Barcelona / Virtual, Spain, 2021, p. 9.
URL https://hal.archives-ouvertes.fr/hal-03149394/file/final_hpcs2020.pdf

[9] M. Kristien, B. Bodin, M. Steuwer, C. Dubach, High-level synthesis of functional patterns with Lift, in: Proceedings of
the 6th ACM SIGPLAN International Workshop on Libraries, Languages and Compilers for Array Programming, ACM,
Phoenix AZ USA, 2019, pp. 35–45. doi:10.1145/3315454.3329957.
URL https://dl.acm.org/doi/10.1145/3315454.3329957

[10] J. Ragan-Kelley, A. Adams, D. Sharlet, C. Barnes, S. Paris, M. Levoy, S. Amarasinghe, F. Durand, Halide: decoupling
algorithms from schedules for high-performance image processing, Communications of the ACM 61 (1) (2017) 106–115.
doi:10.1145/3150211.
URL https://doi.org/10.1145/3150211

[11] J. Dean, S. Ghemawat, Mapreduce: Simplified data processing on large clusters, Commun. ACM 51 (1) (2008) 107–113.
doi:10.1145/1327452.1327492.
URL https://doi.org/10.1145/1327452.1327492

[12] J. McCarthy, Recursive functions of symbolic expressions and their computation by machine, Part I, Communications of
the ACM 3 (4) (1960) 184–195. doi:10.1145/367177.367199.
URL https://doi.org/10.1145/367177.367199

[13] B. C. Pierce, Types and programming languages, MIT Press, Cambridge, Mass, 2002.
[14] J. A. Robinson, A Machine-Oriented Logic Based on the Resolution Principle, Journal of the ACM 12 (1) (1965) 23–41.

doi:10.1145/321250.321253.
URL https://doi.org/10.1145/321250.321253

[15] A. Martelli, U. Montanari, An Efficient Unification Algorithm, ACMTransactions on Programming Languages and Systems
4 (2) (1982) 258–282. doi:10.1145/357162.357169.
URL https://dl.acm.org/doi/10.1145/357162.357169

[16] G. Hutton, Programming in Haskell, Cambridge University Press, 2016, google-Books-ID: 75C5DAAAQBAJ.
[17] J. de Muijnck-Hughes, E. Brady, W. Vanderbauwhede, Value-Dependent Session Design in a Dependently Typed Language,

Electronic Proceedings in Theoretical Computer Science 291 (2019) 47–59. doi:10.4204/EPTCS.291.5.
URL http://arxiv.org/abs/1904.01288v1

[18] J. Hughes, L. Pareto, A. Sabry, Proving the correctness of reactive systems using sized types, in: Proceedings of the 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’96, Association for Computing
Machinery, New York, NY, USA, 1996, p. 410–423. doi:10.1145/237721.240882.
URL https://doi.org/10.1145/237721.240882

[19] Lift Contributors, Lift documentation (Sep. 2018).
URL https://lift-project.readthedocs.io/en/latest/

[20] T. Henriksen, N. G. W. Serup, M. Elsman, F. Henglein, C. E. Oancea, Futhark: purely functional GPU-programming with
nested parallelism and in-place array updates, in: Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ACM, Barcelona Spain, 2017, pp. 556–571. doi:10.1145/3062341.3062354.
URL https://dl.acm.org/doi/10.1145/3062341.3062354

[21] N. Bell, J. Hoberock, Chapter 26 - Thrust: A Productivity-Oriented Library for CUDA, in: W.-m. W. Hwu (Ed.), GPU
Computing Gems Jade Edition, Applications of GPU Computing Series, Morgan Kaufmann, Boston, 2012, pp. 359–371.
doi:10.1016/B978-0-12-385963-1.00026-5.
URL https://www.sciencedirect.com/science/article/pii/B9780123859631000265

[22] A. Collins, D. Grewe, V. Grover, S. Lee, A. Susnea, NOVA: A Functional Language for Data Parallelism, in: Proceedings
of ACM SIGPLAN International Workshop on Libraries, Languages, and Compilers for Array Programming, ACM,
Edinburgh United Kingdom, 2014, pp. 8–13. doi:10.1145/2627373.2627375.

40

http://link.springer.com/10.1007/978-3-319-99725-4_9
https://doi.org/10.1007/978-3-319-99725-4_9
http://link.springer.com/10.1007/978-3-319-99725-4_9
https://dl.acm.org/doi/10.1145/3122955.3122971
https://doi.org/10.1145/3122955.3122971
https://doi.org/10.1145/3122955.3122971
https://dl.acm.org/doi/10.1145/3122955.3122971
http://link.springer.com/10.1007/3-540-45937-5_14
https://doi.org/10.1007/3-540-45937-5_14
http://link.springer.com/10.1007/3-540-45937-5_14
http://ieeexplore.ieee.org/document/4907664/
https://doi.org/10.1109/CGO.2009.20
http://ieeexplore.ieee.org/document/4907664/
https://hal.archives-ouvertes.fr/hal-03149394/file/final_hpcs2020.pdf
https://hal.archives-ouvertes.fr/hal-03149394/file/final_hpcs2020.pdf
https://hal.archives-ouvertes.fr/hal-03149394/file/final_hpcs2020.pdf
https://dl.acm.org/doi/10.1145/3315454.3329957
https://doi.org/10.1145/3315454.3329957
https://dl.acm.org/doi/10.1145/3315454.3329957
https://doi.org/10.1145/3150211
https://doi.org/10.1145/3150211
https://doi.org/10.1145/3150211
https://doi.org/10.1145/3150211
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/367177.367199
https://doi.org/10.1145/367177.367199
https://doi.org/10.1145/367177.367199
https://doi.org/10.1145/321250.321253
https://doi.org/10.1145/321250.321253
https://doi.org/10.1145/321250.321253
https://dl.acm.org/doi/10.1145/357162.357169
https://doi.org/10.1145/357162.357169
https://dl.acm.org/doi/10.1145/357162.357169
http://arxiv.org/abs/1904.01288v1
https://doi.org/10.4204/EPTCS.291.5
http://arxiv.org/abs/1904.01288v1
https://doi.org/10.1145/237721.240882
https://doi.org/10.1145/237721.240882
https://doi.org/10.1145/237721.240882
https://lift-project.readthedocs.io/en/latest/
https://lift-project.readthedocs.io/en/latest/
https://dl.acm.org/doi/10.1145/3062341.3062354
https://dl.acm.org/doi/10.1145/3062341.3062354
https://doi.org/10.1145/3062341.3062354
https://dl.acm.org/doi/10.1145/3062341.3062354
https://www.sciencedirect.com/science/article/pii/B9780123859631000265
https://doi.org/10.1016/B978-0-12-385963-1.00026-5
https://www.sciencedirect.com/science/article/pii/B9780123859631000265
https://dl.acm.org/doi/10.1145/2627373.2627375
https://doi.org/10.1145/2627373.2627375

URL https://dl.acm.org/doi/10.1145/2627373.2627375

[23] B. He, W. Fang, Q. Luo, N. K. Govindaraju, T. Wang, Mars: a MapReduce framework on graphics processors, in: Pro-
ceedings of the 17th international conference on Parallel architectures and compilation techniques, PACT ’08, Association
for Computing Machinery, New York, NY, USA, 2008, pp. 260–269. doi:10.1145/1454115.1454152.
URL https://doi.org/10.1145/1454115.1454152

[24] Y. J. Mo, J. Kim, J.-K. Kim, A. Mohaisen, W. Lee, Performance of deep learning computation with TensorFlow software
library in GPU-capable multi-core computing platforms, in: 2017 Ninth International Conference on Ubiquitous and
Future Networks (ICUFN), IEEE, Milan, 2017, pp. 240–242. doi:10.1109/ICUFN.2017.7993784.
URL http://ieeexplore.ieee.org/document/7993784/

[25] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito, W. S. Moses, S. Verdoolaege, A. Adams, A. Cohen, Tensor
Comprehensions: Framework-Agnostic High-Performance Machine Learning Abstractions, arXiv:1802.04730 [cs]ArXiv:
1802.04730 (Jun. 2018).
URL http://arxiv.org/abs/1802.04730

[26] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gómez, C. Tenllado, F. Catthoor, Polyhedral parallel code generation
for CUDA, ACM Transactions on Architecture and Code Optimization 9 (4) (2013) 54:1–54:23. doi:10.1145/2400682.

2400713.
URL https://doi.org/10.1145/2400682.2400713

[27] J. Hoffmann, K. Aehlig, M. Hofmann, Multivariate amortized resource analysis, in: Proceedings of the 38th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL ’11, Association for Computing
Machinery, New York, NY, USA, 2011, pp. 357–370. doi:10.1145/1926385.1926427.
URL https://doi.org/10.1145/1926385.1926427

[28] L. Merino, M. Ghafari, C. Anslow, O. Nierstrasz, A systematic literature review of software visualization evaluation,
Journal of Systems and Software 144 (2018) 165 – 180. doi:10.1016/j.jss.2018.06.027.
URL http://www.sciencedirect.com/science/article/pii/S0164121218301237

41

https://dl.acm.org/doi/10.1145/2627373.2627375
https://doi.org/10.1145/1454115.1454152
https://doi.org/10.1145/1454115.1454152
https://doi.org/10.1145/1454115.1454152
http://ieeexplore.ieee.org/document/7993784/
http://ieeexplore.ieee.org/document/7993784/
https://doi.org/10.1109/ICUFN.2017.7993784
http://ieeexplore.ieee.org/document/7993784/
http://arxiv.org/abs/1802.04730
http://arxiv.org/abs/1802.04730
http://arxiv.org/abs/1802.04730
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1145/1926385.1926427
https://doi.org/10.1145/1926385.1926427
https://doi.org/10.1145/1926385.1926427
http://www.sciencedirect.com/science/article/pii/S0164121218301237
https://doi.org/10.1016/j.jss.2018.06.027
http://www.sciencedirect.com/science/article/pii/S0164121218301237

Appendix A. Omitted rules

This appendix contains rules that were omitted for brevity.

Appendix A.1. Meta functions

TM-OnlyFree
onlyFree(S1) onlyFree(S2)

onlyFree(S1 × S2)

TM-OnlyFreeBase

onlyFree(x)

TM-Fresh
σ = {S 7→ new fresh shape|S ∈ FV (T)}

σ(T) = fresh(T)

Appendix A.2. Rules for Buffers

A buffer has a type if all its elements have the right shape and the length is correct. The explicit typing
rules are shown in figure A.13.

TM-Buffer
∀i ∈ {0, . . . , n− 1}.Γ ⊢e ei : S

Γ ⊢ (bufS[n] e0, . . . , en−1) : S[n]

TM-BufferMult
∀i ∈ {1, . . . n}.Γ ⊢ Bi : Ti

Γ ⊢ (B1, . . . , Bn) : (T1, . . . , Tn)

TM-StoreType
Γ = {x 7→ Bx | x ∈ dom(M) ∧ ⊢ M[x] : Bx}

⊢ M : Γ

Figure A.13: Rules for buffers and store types.The notation a, . . . , b or ea, . . . , eb is empty if b < a

Appendix A.3. Typing rules for expressions ⊢E

The omitted rules for typing arithmetic expressions are shown below.

TE-Var
x 7→ S ∈ Γ

Γ ⊢e x : S

TE-Int
n is an integer

Γ ⊢e n : int

TE-Float
n is an floating point number

Γ ⊢e n : float

TE-Index
Γ ⊢e ei : int x 7→ S[numla · nl + numb] ∈ Γ

Γ ⊢e (index x ei) : S

TE-BinOp
S ∈ {int, float} Γ ⊢e e1 : S Γ ⊢e e2 : S binOp ∈ {+, -, *, /, %}

Γ ⊢e (binOp e1 e2) : S

TE-BinComp
S ∈ {int, float} Γ ⊢e e1 : S Γ ⊢e e2 : S binOp ∈ {>, <, ==}

Γ ⊢e (binOp e1 e2) : int

TE-Fst
Γ ⊢e e1 : S1 × S2

Γ ⊢e (fst e1) : S1

TE-Snd
Γ ⊢e e1 : S1 × S2

Γ ⊢e (snd e1) : S2

TE-Tuple
Γ ⊢e e1 : S1 Γ ⊢e e2 : S2

Γ ⊢e (tuple e1 e2) : S1 × S2

TE-If
Γ ⊢e ec : int Γ ⊢e et : S Γ ⊢e ef : S

Γ ⊢e (if ec et ef) : S

TE-Let
Γ ⊢e ev : S1 (x 7→ S1) : Γ ⊢e ec : S

Γ ⊢e (let x ev ec) : S

42

Appendix A.4. Reduction rules for expressions ↪→ e

The reduction relation ↪→ e describing the evaluation of arithmetic expressions is shown below. The evalua-
tion of the (index . . .) construct can only be done in the context of a (shpr* . . .) as shown in figure 9

E-Arith
e ↪→ e e′ E ̸= ·
E[e] ↪→ e E[e′]

E-BinOpPlus
numr = num1 + num2

(+ num1 num2) ↪→ e numr

E-BinOpPlus
numr = num1 + num2

(+ num1 num2) ↪→ e numr

E-BinOpMinus
numr = num1 − num2

(- num1 num2) ↪→ e numr

E-BinOpMul
numr = num1 ∗ num2

(* num1 num2) ↪→ e numr

E-BinOpDiv
numr = num1/num2 num2 ̸= 0

(/ num1 num2) ↪→ e numr

E-BinOpDiv0

(/ num1 0) ↪→ e 0

E-BinOpMod
numr = num1%num2 num2 ̸= 0

(% num1 num2) ↪→ e numr

E-BinOpMod0

(% num1 0) ↪→ e 0

E-BinCompLTT
num1 < num2

(< num1 num2) ↪→ e 1

E-BinCompLTF
num1 ≥ num2

(< num1 num2) ↪→ e 0

E-BinCompEqT

num1 = num2

(== num1 num2) ↪→ e 1

E-BinCompEqF

num1 ̸= num2

(== num1 num2) ↪→ e 0

E-BinCompGTT
num1 > num2

(> num1 num2) ↪→ e 1

E-BinCompFTF
num1 ≤ num2

(> num1 num2) ↪→ e 0

E-Fst

(fst (tuple e1 e2)) ↪→ e e1

E-Snd

(snd (tuple e1 e2)) ↪→ e e2

E-If0

(if 0 et ef) ↪→ e ef

E-If
num ̸= 0

(if num et ef) ↪→ e et

E-Let

(let x v e) ↪→ e e[x/v]

Appendix A.5. Explicit Definition of Substitution on Expressions

The definition of substitution is shown below. Note for the substitution of (letB . . .), that the bound y
only affects (retrive . . .) constructs. Buffers are not affected by substitution as they are typed under the
empty environment and can therefore not hold variables.

Definition 5 (Substitution of values).

Work lists and work items

(wl # w)[x/v] = wl[x/v] # w[x/v]
(call r e)[x/v] = (call r e[x/v])

(retrive x)[x/v] = (retrive x)

(letB y wl1 wl2)[x/v] = (letB y wl1[x/v] wl2[x/v])

(bufS[num] e)[x/v] = (bufS[num] e)

43

Transformations

(shpr T xi xa e)[x/v] = (shpr T xi xa e[x/v]) x ̸∈ xa

(shpr T xi xa e)[x/v] = (shpr T xi xa e) x ∈ xa

(mapr T xi xd e)[x/v] = (mapr T xi xd e[x/v]) x ̸∈ {xi, xd}
(mapr T xi xd e)[x/v] = (mapr T xi xd e) x ∈ {xi, xd}

(redr T xd xa e0 eb)[x/v] = (redr T xd xa e0[x/v] eb[x/v]) x ̸∈ {xd, xa}
(redr T xd xa e0 eb)[x/v] = (redr T xd xa e0[x/v] eb) x ∈ {xd, xa}

(shpr* D M)[x/v] = (shpr* D[x/v] M)

Arithmetic Expressions

(k e)[x/v] = (k e[x/v]) k ∈ {+, -, *, /, fst, snd, if, tuple}
(let y e)[x/v] = (let y e[x/v]) x ̸= y

(let x e1 e2)[x/v] = (let x e1[x/v] e2)

(index y e)[x/v] = (index y e[x/v])

x[x/v] = v

y[x/v] = y x ̸= y

Appendix A.6. Application of Unifiers

The rules for applying unifiers are shown below.

Substitution on terms

(σ, ⟨λ(a · n+ b)/(f1 · l + f2)⟩)(B[e]) = σ(B[⟨λ(a · n+ b)/(f1 · l + f2)⟩ e])
(σ, ⟨A/A′⟩)(B[e]) = σ ((⟨A/A′⟩B)[e])

⟨λ(a · n+ b)/(f1 · l + f2)⟩ (p · n+ q) = f1(p, q) · l + f2(p, q)

⟨λ(a · n+ b)/(f1 · l + f2)⟩ (p ·m+ q) = p ·m+ q m ̸= n

Shape substitution

⟨A/A′⟩A = A′

⟨A/A′⟩B = B A ̸= B

⟨A/A′⟩ (S1 × S2) = ⟨A/A′⟩ (S1)× ⟨A/A′⟩ (S2)

⟨A/A′⟩ (int) = int

⟨A/A′⟩ (float) = float

Substitution fusing

σ(u1, . . . , um) = (σ(u1), . . . , σ(um))
(σ, ⟨B/B′⟩)(⟨A/A′⟩) = σ(⟨A/(⟨B/B′⟩ (A′))⟩)
(σ, ⟨λ(a ·m+ b)/(f ′

1(a, b) · k + f ′
2(a, b))⟩)(⟨λ(a · n+ b)/(f1(a, b) · l + f2(a, b))⟩)

=

{
σ(
〈
λ(a · n+ b)

/(
f ′
1

(
f1(a, b), f2(a, b)

)
· k + f ′

2

(
f1(a, b), f2(a, b)

))〉
) m = l

σ(⟨λ(a · n+ b)/(f1(a, b) · l + f2(a, b))⟩) m ̸= l

44

Appendix B. Omitted lemmas and proofs

Appendix B.1. Join Preserves Containment of Free Variables

Proof for lemma 1. By induction on n:

IB (n = 0): trivial (B|C = B⋆|C⋆)

IS (n > 0): Let Tn := B2 _ B3 and B′|C′ := join⋆(B|C , T1, . . . , Tn−1). From the definition of join:

σ = unify(B′, B2) and FV (B3) ⊆ FV (B2) ∴ FV (σ(B3)) ⊆ FV (σ(B2)) = FV (σ(B′))
IH
⊆ FV (σ(C′)) ∴

FV (B⋆) = FV (σ(B3)) ⊆ FV (σ(C′)) = FV (C⋆)

Appendix B.2. Constructed types have contained Free Variables

Proof for lemma 2. By well-founded induction on the derivation of A | Γ ⊢p wl : B|C . We do a case analysis
on the last applied rule of the derivation.

TP-Retrive , in this case T = (Bx1 , . . . , Bxn) and C = {x′
1 7→ Bx′

1
, . . . , x′

n 7→ Bx′
m
} for fresh buffer types

Bx′
1
to Bx′

m
with {x′

1, . . . , x
′
m} =

⋃m
i=1

{
xmin{j | xj=xi}

}
. The set {x′

1, . . . , x
′
m} contains all the variable

names used in in the return. For every returned variable xi it holds that xi = xmin{j | xj=xi}. And
thus also that that Bxi

= Bxmin{j | xj=xi}
. Consequently,

⋃n
i=0{Bxi

} =
⋃m

i=0{Bx′
i
}. From which it

immediately follows that:

FV (T) = FV

(
n⋃

i=0

{Bxi
}

)
= FV

(
m⋃
i=0

{
Bx′

i

})
= FV (C)

And thus also FV (T) ⊆ FV (C)

TP-LetB , in this case wl = (letB x wl1 wl2). The premise of the rule states that A | Γ ⊢p wl1 : (B1)|C1
and A | Γ ⊢p wl2 : BL|CL . To which we may apply the IH to get that FV (B1) ⊆ FV (C1) and
FV (BL) ⊆ FV (CL). TheTP-LetB rule also gives us that the resulting type B|C is japply (x 7→ B1, C1, BL, CL) =
σ(BL|C1 ∪ (CL \ x)) for some σ such that FV (σ(CL[x])) = FV (σ(B1)) ⊆ FV (σ(C1)), thus FV (σ(CL)) ⊆
FV (σ(C1 ∪ (CL \ x))). We may conclude:

FV (B) = FV (σ(BL)) ⊆ FV (σ(CL)) ⊆ FV (σ(C1 ∪ (CL \ x))) = FV (C)

TP-Buf , in this case FV (B) = ∅, B is a concrete buffer type. Thus ∅ = FV (B) ⊆ FV (C).

TP-List Let the work list be wl1 # w2, such that A | Γ ⊢p wl1 # w2 : B|C . From TP-List we have:

• A | Γ ⊢p wl1 : B1|C1 (premise of TP-List), and by the IH: FV (B1) ⊆ FV (C1)

• A | Γ ⊢p w2 : B2 _ B3|∅ (premise of TP-List combined with definition of join)

• B|C = join (B1|C1 , B2 _ B3)

The required result follow immediately from the IH and lemma 1 (Join preserves containment of free
variables).

TP-Call can not be the last rule as they produce an arrow (not a B).

45

Appendix B.3. The output of validate⋆ is concrete

Lemma 8. The output of validate⋆(M, B|C1 , T1, . . . , Tn) is concrete if it exists

Proof. The unifier σ in the premise of TP-Validate ensures that σ(C) = M and because store is concrete
and FV (B) ⊆ FV (C), it must hold that σ(B) is concrete.

Corollary 9 (Store consistent substitution preserves types). If

• ⊢ (main (prog A w1 # wl) M) : B

• (main (prog A w1 # wl) M) ⇝p (main (prog A w2 # wl) M)

• w2 = σ(w1)

• σ is consistent with M

then ⊢ (main (prog A w2 # wl) M) : B

Lemma 10. If for any M, B0, B1 C1, Crest and T1, . . . , Tn

• validate⋆(M, σ (B0|C1 ∪ Crest) , T1, . . . , Tn) has a value, and

• FV (B1) ⊆ FV (C1)

then validate⋆(M, B1|C1) has a value.

Proof. Because validate⋆(M, σ (B0|C1 ∪ Crest) , T1, . . . , Tn) has a value, σ(C1∪Crest) and M
∣∣
dom(C1∪Crest)

must

be unifiable and dom(C1 ∪ Crest)) ⊆ dom(M) by TP-Validate. And so, σ(C1) and M
∣∣
dom(C1)

must also

be unifiable. Which can only hold if, C1 and M
∣∣
dom(C1)

are also unifiable. Additionally we know that

dom(C1) ⊆ dom(C1 ∪ Crest)) ⊆ dom(M). Finally, it is given that FV (B1) ⊆ FV (C1).

We conclude that all premises of TP-Validate are fulfilled to give validate⋆(M, B1|C1) a value.

Appendix B.4. Proofs and Corollaries of the Validation Lemma

for lemma 3. Take an arbitrary σ consistent with M and C1, the proof continues by induction on n.

IB n = 0, so we may unfold validate (remove the ⋆) and reformulate our goal as follows. We need to show
that:

B = validate(M, B1|C1)
?⇐⇒ B = validate(M, σ (B1|C1))

⇒ By TP-Validate we know thatB = validate(M, B1|C1) = σI(B1) for an σI = unify
(
M
∣∣
dom(C1)

, C1
)
.

Our goal is to prove that validate(M, σ (B1|C1)) = σI(B1) = B.

Because σ is consistent with M and C1, we know ,by definition, that σ ⊆ unify(M
∣∣
dom(C1)

, C1) =
σI . As M is concrete and dom(C1) ⊆ dom(M) , all free variables in C1 must be bound to a
concrete value by σI . σ is a subset of σI and hence also only transforms variables to concrete
terms. Consequently, all free variables in C1 that are also in dom(σ) will be replaced by concrete
terms in σ(C1), the variables that remain in σ(C1) are substituted with concrete terms by σI \ σ
and it will be the case that (σI \ σ)(σ(C1)) ⊆ M (see results from Robinson et al.[14]), thus:

σI \ σ = unify
(
M
∣∣
dom(σ(C)), σ(C)

)
We also know that FV (σ(B1)) ⊆ FV (σ(C1)) because we had that FV (B1) ⊆ FV (C1). Addition-
ally, we know that dom(σ(C1)) = dom(C1) ⊆ dom(M).

46

Now, we may conclude that:

validate(M, σ (B1|C)) = (σI \ σ)(σ(B1)) = σI(B1) = validate(M, B1|C1) = B

Also note that FV (σ(B1)) ⊆ FV (σ(C1)) because FV (B1) ⊆ FV (C1). And that dom(C1) =
dom(σ(C1)).

⇐ We know that FV (B1) ⊆ FV (C1) because this is given and, we know that dom(C1) = dom(σ(C1)) ⊆
dom(M). So two of the premises of TP-Validate for the left side validate are satisfied. The
remaining premise requires the existence of unify(M, C1). Because the validate in the given works,
we know that unify(M, σ(C1)) exists and even that: B = unify(M, σ(C1)) (σ(B1)). From this we
know that σ(C1) is unifiable with M, so C1 must also be unifiable, therefore, unify(M, C1) exists.

What remains to be proven is that:

validate(M, σ (B1|C1)) = unify(M, σ(C1))(σ(B1))
?
= unify(M, C1) (B1) = validate(M, B1|C1)

It suffices to prove that ∀X ∈ FV (B1).unify(M, σ(C1)) (σ(X)) = unify(M, C1) (X) because it
immediately implies our goal. Take an arbitrary X ∈ FV (B1), this X must also be in FV (C1)
and thus also in dom(unify(M, C1)). There are two possibilities:

• X ∈ dom(σ). In this case, σ(X) is a concrete value because σ is store compatible. So, we
may apply any unifier to σ(X) without any effect . Because σ ⊆ unify(M, C1), we know that
unify(M, C1) (X) = σ(X). So:

unify(M, σ(C1)) (σ(X)) = σ(X) = unify(M, C1) (X)

• X ̸∈ dom(σ). Because X ∈ FV (C1) it must occur in one of its keys: ∃k.X ∈ FV (C1[k]).
We know that unify(M, σ(C1)) (σ(C1)) = M

∣∣
dom(σ(C1))

= M
∣∣
dom(C1)

, the same holds without

σ. So we may write:

unify(M, σ(C1)) (σ(C1)) = M
∣∣
dom(C1)

= unify(M, C1) (C1)
k∈dom(C1)⇒ unify(M, σ(C1)) (σ(C1[k])) = M[k] = unify(M, C1) (C1[k])

The above is only possible if unify(M, σ(C1)) (σ(X)) = unify(M, C1) (X) becauseX ∈ FV (C1[k]).

IH ∀0 ≤ n < n1.B = validate⋆(M, B1|C1 , T1, . . . , Tn) ⇐⇒ B = validate⋆(M, σ (B1|C1) , T1, . . . , Tn)

IS We must show that:

B = validate⋆(M, B1|C1 , T1, . . . , Tn1) ⇐⇒ B = validate⋆(M, σ (B1|C1) , T1, . . . , Tn1)

Let Tn1
= BX _ BY our goal is now equivalent to showing thatB = validate(M, B1|C1 , T1, . . . , Tn1−1︸ ︷︷ ︸

B∗
n1−1|C∗

n1−1

, BX _

BY) if and only if ⇐⇒ B = validate(M, σ (B1|C1) , T1, . . . , Tn1−1, BX _ BY).

The proof is the same in both directions. We will work out the ⇒ direction, ⇐ is analogous.

Since validate⋆(M, B1|C1 , T1, . . . , Tn1−1, BX _ BY) has a value we may conclude that:

• B∗
n1

∣∣C∗
n1

:= join⋆(B1|C1 , T1, . . . , Tn1−1, BX _ BY) has a value.

From this existence we may further derive the existence of B∗
n1−1

∣∣C∗
n1−1 := join⋆(B1|C1 , T1, . . . , Tn1−1).

From TM-Join we get that B∗
n1

∣∣C∗
n1

= σj

(
BY

∣∣C∗
n1−1

)
with σj = unify

(
B∗

n1−1, BX

)
.

47

• σn1 := unify(M, σj(C∗
n1−1)) has a value that ensures that σn1(σj(BY)) = B.

Because σn1(σj(C∗
n1−1)) ⊆ M we may also derive that σn1−1 := unify(M, C∗

n1−1) exists.

• FV (B1) ⊆ FV (C1) and with lemma 1 we get: FV (B∗
n1−1) ⊆ FV (C∗

n1−1).

• dom
(
C∗
n1−1

)
= dom(σj(Cn1

)) = dom(Cn1
) ⊆ dom(M).

The last three points give us all the premises of TP-Validate to derive that some B′ exists for the
following result.

B′ = validate⋆
(
M, B∗

n1−1

∣∣C∗
n1−1

)
= validate⋆(M, B1|C1 , T1, . . . , Tn1−1) = σn1−1(B

∗
n1−1)

To which we may apply the IH and get the following: (the same result, removing the σ, is obtained
for the ⇐ direction):

B′ = validate⋆(M, σ(B1|C1), T1, . . . , Tn1−1)

As before, we may define B∗′

n1−1

∣∣∣C∗′

n1−1 := join⋆(σ(B1|C1), T1, . . . , Tn1−1) and know that σ′
n1−1 :=

unify(M, C∗′

n1−1) exists.

Now, we observe that it must hold that B′ = σn1−1(B
∗
n1−1) = σn1

(σj(B
∗
n1−1)). Because σn1−1(X) =

σn1
(σj(X)) for any free variable X of B∗

n1−1. Formally we use lemma 1 to get that FV (B∗
n1−1) ⊆

FV (Cn1−1), and then we use the definition of unify combined with the fact that range(M) is concrete:

∀X ∈ FV (B∗
n1−1).∃k.X ∈ FV (C∗

n1−1[k]).σn1−1(C
∗
n1−1[k]) = M[k] = σn1

(σj(C
∗
n1−1[k]))

We may write: σ′
n1−1(B

′∗
n1−1) = B′ = σn1

(σj(B
∗
n1−1)) = σn1

(σj(BX)) and conclude that B
′∗
n1−1 and

BX are unifiable and, even stronger, that they both can be unified to the concrete value B′. Because
σ′
j := unify(B

′∗
n1−1, BX) is a most-general unifier, it holds that σ′

j(B
∗
n1−1) (and σ′

j(BX)) can be unified
to B′.

• Define T as the unique unifier such that T (σ′
j(B

∗′

n1−1)) = B′ with dom(T) = FV (σ′
j(B

∗′

n1−1)) and
range(T) concrete values. This T certainly exist because of the argument above.

• Let S := σ′
n1−1 = unify(M, C∗′

n1−1).

• Let W := S
∣∣
FV (C∗′

n1−1)\dom(T)
∪ T

• We want to show that W = unify(M, σ′
j(C∗′

n1−1)). To this end, we need that dom(W) =

FV (C∗′

n1−1) (holds by definition) and that W (C∗′

n1−1) ⊆ M. We prove the later condition by

proving that W (σ′
j(C

∗′

n1−1[v])) = M[v] for arbitrary v ∈ dom(C∗′

n1−1). This holds if ∀X ∈
FV (C∗′

n1−1[v]).W (σ′
j(X)) = S(X). Arbitrarily take such anX (if FV (C∗′

n1−1[v]) = ∅,W (σ′
j(C

∗′

n1−1[v])) =

C∗′

n1−1[v] = S(C∗′

n1−1[v]) = M[v]). There are three possibilities:

– if X ̸∈ dom(σ′
j) ∧X ∈ dom(T) ∴ X ∈ FV (B∗′

n1−1): W (σ′
j(X)) = W (X) = T (X) = S(X)

since σ′
j(X) = X and ∀X ∈ FV (B∗′

n1−1).S(X) = T (σ′
j(X)) because S(B∗

n1−1) = T (σ′
j(B

∗
n1−1))

– if X ̸∈ dom(σ′
j) ∧X ̸∈ dom(T): W (σ′

j(X)) = W (X) = S(X)

– if X ∈ dom(σ′
j) ∴ X ∈ FV (B∗′

n1−1): W (σ′
j(X)) = T (σ′

j(X)) = S(X)

• We now have: W = unify
(
M, σ′

j(C∗′

n1−1)
)
and W (σ′

j(B
∗′

n1−1)) = W (σ′
j(BX)) = B′

• We had: σn1
(σj(B

∗
n1−1)) = σn1

(σj(BX)) = B′ and σn1
(σj(BY)) = B

48

• So: W (σ′
j(B

∗′

n1−1)) = unify
(
M, σ′

j(C∗′

n1−1)
)
(σ′

j(B
∗′

n1−1)) = unify
(
M, σ′

j(C∗′

n1−1)
)
(σ′

j(BX)) = W (σ′
j(BX)) =

B′

and thus W (σ′
j(BY)) = unify

(
M, σ′

j(C∗′

n1−1)
)
(σ′

j(BY)) = B because FV (BY) ⊆ FV (BX).

• And henceB = validate⋆
(
M, σ′

j(BY

∣∣∣C∗′

n1−1)
)
= validate⋆

(
M, B∗′

n1

∣∣∣C∗′

n1

)
= validate⋆(M, σ (B1|C1) , T1, . . . , Tn1)

We can derive two corollary of lemma 3.

Corollary 11. For any σ consistent with Mand C1 such that FV (σ(B1)) = ∅,
B = validate⋆(M, B1|C1 , T1, . . . , Tn) ⇐⇒ B = validate⋆(M, σ (B1|∅) , T1, . . . , Tn)

Proof of corollary 11. ⇒ We know that B = validate⋆(M, σ (B1|σ(C1)) , T1, . . . , Tn) because of lemma 3.
Looking atTM-Join, we notice that the final constraint C inTP-Validate is: σn(σn−1(. . . σ1(σ(C1)) . . .)).
The corresponding constraint on the right-hand side of “ ⇐⇒ ” is σn(σn−1(. . . σ1(σ(∅)) . . .)) = ∅. Since
TM-Join ensures that no new free variables are introduced, all free variables in the result of join must
be those of σ(B1), in this case none. Hence, FV (σ(B)) ⊆ FV (∅). The other premises of validate are
also trivially satisfied (∅ = unify(M, ∅), dom(C) = ∅ ⊆ dom(M)).

⇐ We know thatB = validate⋆(M, σ(B1)|∅ , T1, . . . , Tn) for a σ ⊆ unify(M, C1). For anyM′ = M
∣∣
dom(C1)

⊆
M we know that M′ only has concrete values, any application of a unifier to M′ will result in M′.
The the final C derived for validate⋆(M, σ(B1)|M′ , T1, . . . , Tn) will be M′. So:

unify(M, C) = unify(M,M′) = ∅ = unify(M, ∅)

and hence

B = validate⋆(M, σ(B1)|M′ , T1, . . . , Tn) = validate⋆(M, σ(B1|M′), T1, . . . , Tn)

and by lemma 3 we have:
B = validate⋆(M, B1|C′

1 , T1, . . . , Tn)

The second corollary follows immediately form the previous one.

Corollary 12. For any σ consistent with M and C1 such that FV (σ(B1)) = ∅,
B = validate⋆(M, B1|C1 , T1, . . . , Tn) ⇐⇒ B = validate⋆(M, σ (B1|M) , T1, . . . , Tn) = validate⋆(M, σ (B1)|M , T1, . . . , Tn)

Appendix B.5. Substitution Lemmas

Lemma 13. For any arithmetic expression e, any valid environment Γ with x ∈ Γ and any value v such
that ⊢e v : Γ[x], it holds that if Γ ⊢e e : S, then Γ ⊢e e[x/v] : S

Lemma 14. For any transformation t, and any valid environment Γ with x ∈ Γ and any value v such that
⊢e v : Γ[x], it holds that if Γ | ∅ ⊢p t : B1 _ B2|∅ , then Γ | ∅ ⊢p t[x/v] : B1 _ B2|∅ .

49

Appendix B.6. Preservation

Proof. Proof for lemma 6

All programs p have the (canonical) form (prog A wl). So we know that ⊢ (main (prog A wl) M) : B
for some A and wl. By TP-Main and TP-Prog, we have that all definitions in A are well-typed by
TT-Abst and that ∅ | A ⊢p wl : Bwl|Cwl with B = validate(M, Bwl|Cwl).

We will prove preservation by structural induction on the evaluation relation ⇝P . We inspect all possible
last rules of the derivation tree.

A general approach we will take with most rules is to show that validate(M, Bwl|Cwl) = B = validate(M, B′
wl|C′

wl)
with B′

wl|C′
wl the type of wl′, the work list after taking the step. We may do this because our evaluation

rules only make changes to the work list, they may access elements outside the work list, but they do not
change them.

For rules of the form Ew [wl1] ⇝p Ew [wl′1], we may formulate the following sufficient condition to ease
proving preservation.

(∅ | A ⊢p wl1 : B1|C1 ∧ ∅ | A ⊢p wl′1 : B1|C1) =⇒ Ew [wl1] ⇝p Ew [wl′1] preserves types

In these cases, will only show that the type of wl1 equals that of wl′1. This suffices for preservation because
wl = Ew [wl1] for some Ew. To be precise, wl must have the from wl1 #w2 # . . . #wn for some n. For n = 1 the
implication is trivial because wl1 = wl and wl′1 = wl′ and therefore Bwl|Cwl = B1|C1 = B′

1|C′
1 = B′

wl|C′
wl .

For n > 1, we derive ∅ | A ⊢p wl : Bwl|Cwl by repeated application of TP-List. Hence, Bwl|Cwl =
join⋆(B1|C1 , T2, . . . , Tn) with ∅ | A ⊢p wl1 : B1|C1 and ∀i ∈ {2, . . . , n}.∅ | A ⊢p wi : Ti|∅ . In this case
we have that B = validate⋆(M, B1|C1 , T2, . . . , Tn). We must show that validate⋆(M, B′

1|C′
1 , T2, . . . , Tn) = B

with ∅ | A ⊢p wl′1 : B′
1|C′

1 , which trivially holds if B1|C1 = B′
1|C′

1 .

• E-Call is a rule of the form Ew [wl1]⇝p Ew [wl′1] where wl1 = Dv #(call r v) and wl′1 = t[x/v] with
t the body of (abst r . . .). We know that ∅ | ∅ ⊢p Dv : Bv|∅ (by TP-Buf). Because the Ew [wl1]
is well-typed, wl1 is well-typed (by TP-List), the part corresponding to the (call . . .) above must
have been typed as: ∅ | ∅ ⊢p (call r v1 . . . vn) : T |∅ by TP-Call. Combined by TP-List we get
that ∅ | ∅ ⊢p wl1 : B1|C1 with B1|C1 = join (Bv|∅ , T).

TP-Call also gives us that A must have contained a (abst r (S1, . . . , Sn) → T x1 . . . xn t) and
that ∀i.Γ ⊢e vi : Si. From TP-main we know that the chosen abstraction in A must have been well-
typed by TT-Abst and thus that (x1 7→ S1) : . . . : (xm 7→ Sm) | ∅ ⊢p t : T |∅ . By lemma 14 we get
∅ | ∅ ⊢p t[x/v] : T |∅ and thus also Γ | A ⊢p t[x/v] : T |∅ . We conclude that the the E-Call rule replaces
the (call . . .) construct by a t[x/v] of identical type. Hence B′

1|C′
1 = join (Bv|∅ , T) = B1|C1 .

• E-CallRedr is a rule of the form Ew [wl1]⇝p Ew [wl′1] where wl1 = (Dv
i) #(redr r T xd xa v0 eb)

and wl′1 = (Dv
o) # (redr r T xd xa eb[xd, xa/vi,0, e0] eb) in which the value buffer Dv

o is Dv
i without

its first element vi,0.

Because wl1 is well typed, we know that:

– (Dv
i) must have been concretely typed by TP-Buf as ∅ | ∅ ⊢p (Dv

i) : (Sc
d[m])|∅

– The (redr . . .) must have been typed by TT-Redr as
∅ | ∅ ⊢p (redr r T xd xa v0 eb) : (Sd[n]) _ (Sa[1])|∅ . From the premises of TT-Redr we
also know that ⊢e v0 : Sa and (xa 7→ Sa) : (xd 7→ Sd) ⊢e eb : Sa.

– From TP-List we get ∅ | ∅ ⊢p wl1 : B1|C1 with B1|C1 = join ((Sc
d[m])|∅ , (Sd[n]) _ (Sa[1])).

Since v0 is a concrete value and ⊢e v0 : Sa, the type Sa must also be concrete, so σ(Sa) = Sa for
any unifier including σ := unify(Sc

d[m], Sd[n]). So we know that B1|C1 = Sa|∅

Because (xa 7→ Sa) : (xd 7→ Sd) ⊢e eb : Sa it must also hold that (xa 7→ σ(Sa)) : (xd 7→ σ(Sd)) ⊢e eb : σ(Sa).
And as σ(Sa) = Sa, we may state that: (xa 7→ Sa) : (xd 7→ σ(Sd)) ⊢e eb : Sa. Combined with lemma 13

50

we get ⊢e eb[xd, xa/vi,0, v0] : Sa because ⊢e v0 : Sa and ⊢e vi,0 : σ(Sd) = Sc
d. As a consequence the

type of the (redr . . .) does not change.

The shape of the elements in the first buffer does not change, but the size decreases with one. As
∅ | ∅ ⊢p (Dv

i) : (Sc
d[m])|∅ , we may write that ∅ | ∅ ⊢p (Dv

0) : (Sc
d[m

′])|∅ with m′ = m− 1. Note that
E-CallRedr only applies if m is strictly positive.

The type of wl′1 is derived by TP-List, the resulting type is join ((Sc
d[m

′])|∅ , (Sd[n]) _ (Sa[1])) =
Sa|∅ = B1|C1 . The join must succeed because n was fresh in TT-Redr and thus unifies effortlessly
with m and m′.

We conclude that B1|C1 = B′
1|C′

1 and have hence proven preservation for this case.

• E-CallRedr0: is a rule of the form Ew [wl1]⇝p Ew [wl′1] where wl1 = ((bufSc
d[k]

))#(redr r T xd xa v0 eb)
and wl′1 = (bufSa[1] v0) with k ≤ 0.

Analogous to the E-CallRedr case we get: B1|C1 = join ((Sc
d[k])|∅ , (Sd[n]) _ (Sa[1])) = Sa[1]|∅

and ⊢e v0 : Sa.

From TP-Buf we get that wl′1 = (bufSa[1] v0) is typed Sa[1]|∅ = B′
1|C′

1 = B1|C1 .

We conclude that B1|C1 = B′
1|C′

1 and have hence proven preservation for this case.

• E-CallShpr is a rule of the form Ew [wl1]⇝p Ew [wl′1] where wl1 = (Dv
1 , . . . , D

v
m)#(shpr r T xi (xv,1 . . . xv,m) e)

and wl′1 = (shpr* ((bufSo[k] . . .)) Ms) with k the length of the output buffer Sc
o[k] = join (Bv

i |∅ , T)
and Ms = (xv,1 : Dv

i,1) : . . . : (xv,m : Dv
i,m). We will show that the types of wl1 and wl′1 are identical.

Let Bc
i be the type of input buffer Dv

i (∅ | ∅ ⊢p (Dv
1 , . . . , D

v
m) : (Bc

1, . . . , B
c
m)|∅). The (shpr . . .) in

wl1 must be well typed by TT-Shpr and we know that:

– T = (S1[e1], . . . , Sm[em]) _ (So[eo])

– (xi 7→ int), (xv,1 7→ S1[e1]), . . . , (xv,m 7→ Sm[em]),Γ ⊢e e : So

– ∀i.onlyFree(Si)

The full work list wl1 will have been typed join ((Bc
1, . . . , B

c
m), (S1[e1], . . . , Sm[em]) _ (So[eo])) =

B1|C1 by TP-List. Let σ be the unifier unify((Bc
1, . . . , B

c
m), (S1[e1], . . . , Sm[em])) used in join. From

the premise of E-CallShpr we know that: B1|C1 = Sc
o[k]|∅ .

We must show that wl′1 = (shpr* ((bufSo[k] e[xi/0], . . . , e[xi/(k − 1)])) Ms) is typed Sc
o[k]|∅ . Look-

ing at TT-BufferShpr we can refine our goal to Γs ⊢b ((bufSo[k] e[xi/0], . . . , e[xi/(k − 1)])) : Sc
o[k]

with Γs = (xv,1 7→ Bc
1, . . . , xv,m 7→ Bc

m). If k > 0, TP-Buf indeed validates that there are k values in
the buffer (e[xi/0], . . . , e[xi/(k−1)]). Otherwise, TP-Buf requires that the buffer is written (bufSo[k]

), which is the case because e[xi/0], . . . , e[xi/(k− 1)] is empty list in this case. What remains it to be
shown is that Γs ⊢e e[xi/num] : So for any number num.

From TT-Shpr before the application, we know that (xi 7→ int), (xv,1 7→ S1[e1]), . . . , (xv,m 7→
Sm[em]) ⊢e e : So. To which we may apply the unifier σ to get:

(xi 7→ int), (xv,1 7→ S1[e1]), . . . , (xv,m 7→ Sm[em]) ⊢e e : So

⇐⇒ (xi 7→ int), (xv,1 7→ σ(S1[e1])), . . . , (xv,m 7→ σ(Sm[em])) ⊢e e : σ(So)
⇐⇒ (xi 7→ int), (xv,1 7→ Bc

1), . . . , (xv,m 7→ Bc
m) ⊢e e : Sc

o

⇐⇒ (xi 7→ int), Γs ⊢e e : Sc
o

Now we use lemma 13 to get our remaining goal: Γs ⊢e e[xi/num] : Sc
o.

• E-EndShpr is a rule of the form Ew [wl1] ⇝p Ew [wl′1] where wl1 = (shpr* (Dv) Ms) and wl′1 =
(Dv). By TT-BuffferShpr we know that ∅ | ∅ ⊢p (shpr* (Dv) Ms) : (Bs)|∅ iff Γs ⊢ Dv : Bs. But
because Bs is the type of a concrete buffer, it does not contain any variables. We may use lemma 13
to get ∅ ⊢ Dv : Bs. TP-Buf now gives us ∅ | ∅ ⊢p (Dv) : Bs|∅ . The type is preserved.

51

• E-Index is a rule of the form Ew [wl1]⇝p Ew [wl′1] where wl1 = (shpr* EB [E[(index x1 num)]] Ms)

and wl′1 = (shpr* EB [E[vnum]] Ms), for some vnum an element of the buffer Ms[x1].

TT-BufferShpr specifies that the type of a (shpr* . . .) is the type of its body (EB [E[(index x1 num)]])
typed under the environment Γs derived fromMs. TheTE-index rule specifies that Γs ⊢e (index x1 num) : S
if Γs contains an entry for x with a type of the form S[el] with el an affine function in one free variable.
Such a type can only be added to the environment by two rules: TT-Shpr and TM-BufferShpr
(the other rules only add non-buffer types). Since a (shpr . . .) and a (shpr* . . .) are not nestable
(definition of w), the shape of wl learns us that the type for x in Γs must have originated from the
TM-BufferShpr rule. Hence, Γs must contain a mapping x : S[el]. This can only be the case if Ms

contain a buffer for x of the form (bufS[num] v) where each v is of type S (TM-StoreType). The
vnum selected by E-Index is therefore of type S: Γs ⊢e vnum : S.

To summarize, the (index x n) of type S is replaced by a value of type S. The rest of the type
derivation remains identical, and we can conclude that the type and constrains of wl1 and wl′1 are
identical.

• E-OutOfBounds: Same argument as for E-Index but now we replace the value with a zero of shape
S. Note that the buffer is tagged with the expected type, this ensures that the rule also works if the
selected buffer in Ms is empty because it has a size ≤ 0.

• E-Retrive: We cannot take the same approach as we did for the previous steps. As opposed the
the previous rules, the type of wl1 = (retun . . .) and wl′1 = (buf . . .) are not the same. In-
stead, we will show that validate(M, Bwl|Cwl) = B = validate(M, B′

wl|C′
wl) with B′

wl|C′
wl the type

of wl′, the work list after taking the step. Before the step, the type of the (retrive x1 . . . xn) is
(Bx1 , . . . , Bxn)

∣∣{x′
1 7→ Bx′

1
, . . . , x′

n 7→ Bx′
m
} , with allBx′

i
fresh and {x′

1, . . . , x
′
m} =

⋃m
i=1

{
xmin{j | xj=xi}

}
.

After E-Retrive, the type is concrete: (Bc
1, . . . , B

c
n)|∅ .

There are only m unique values for xi namely {x′
1, . . . , x

′
m}. As such, there must exist an injection g

such that ∀i ∈ {1, . . . , n}.xi ≡ x′
g(i). This injection also works for the buffers: ∀i ∈ {1, . . . , n}.Bxi ≡

Bx′
g(i)

. Let us look at a unifier σ that transforms (Bx1
, . . . , Bxn

) into (Bc
1, . . . , B

c
n). This unifier also

transforms (Bx′
g(1)

, . . . , Bx′
g(n)

) into (Bc
1, . . . , B

c
n).

One such unifier is: σ := unify
(
M
∣∣
x′
1,...,x

′
m
, {x′

1 7→ Bx′
1
, . . . , x′

m 7→ Bx′
m
}
)
as E-Retrive selects these

buffers. σ is compatible with {x′
1 7→ Bx′

1
, . . . , x′

m 7→ Bx′
m
} and M by definition. We may hence use

corollary 11 as we do below:

B = validate⋆(M, Bwl|Cwl)

= validate⋆(M,

type of (retrive x1, . . . xn)︷ ︸︸ ︷
(Bx1

, . . . , Bxn
)
∣∣{x′

1 7→ Bx′
1
, . . . x′

m 7→ B′
xm

} ,
type of wl2,...,wln︷ ︸︸ ︷

T2, . . . , Tn)~w� corollary 11

= validate⋆(M, σ((Bx1 , . . . , Bxn))|∅ , T2, . . . , Tn)
= validate⋆(M, (Bc

1, . . . , B
c
n)|∅ , T2, . . . , Tn)

= validate⋆(M, B′
wl|C′

wl) = B

And thus we have proven this case.

• E-LetBEnd is a rule of the form Ew [wl1] ⇝p Ew [wl′1] where wl1 = (letB x (bufS[num] v) D1)

and wl′1 = D1. We immediately see that B1|C1 = B2|∅ = B′
1|C′

1 in the type derivation tree below.

52

Γ | A ⊢p (bufS[num] v) : B1|∅

Γ | A ⊢p Dv
1 : B2|∅

∅ = σ = unify (∅ ∪ {x 7→ B1}, ∅)
B2|∅ = σ(B2|∅) = japply (x 7→ B1, ∅, B2, ∅)

TT-Japply

Γ | A ⊢p (letB x (bufS[num] v) Dv
1) : B2|∅

TP-LetB

• E-LetB1: Looking at the rule, we know that wl must have been of the form (letB x wl1 wlL) #
wl2 # . . . # wln. Because the program is well typed, we know that the (let . . .) must have been typed
japply (x 7→ B1, C1, BL, CL) by TP-LetB with ∅ | A ⊢p wl1 : (B1)|C1 and ∅ | A ⊢p wlL : BL|CL . The
full program will be typed B by:

B = validate⋆(M,

type of (letB . . .)︷ ︸︸ ︷
japply (x 7→ B1, C1, BL, CL),

type of wl2#...#wln︷ ︸︸ ︷
T2, . . . , Tn)

= validate⋆(M, σj(BL|C1 ∪ (CL \ x)), T2, . . . , Tn)

Because the above validate⋆ succeeds and FV (B1) ⊆ FV (C1) (lemma 2), we may derive by Lemma 10
that validate(M, B1|C1) has a value. And we may useTP-Main to get that (main (prog A wl1) M)

is well typed. So we may use the IH on the premise of E-LetB1:
(main (prog A wl1) M) ⇝p (main (prog A wl′1) M). We obtain, that there exists a concrete
Bc

1 such that validate(M, B1|C1) = unify(M, C1)(B1) = Bc
1 = unify(M, C′

1)(B
′
1) = validate(M, B′

1|C′
1),

with ∅ | A ⊢p wl′1 : (B′
1)|C′

1 .

Let σj := unify (C1 ∪ {x 7→ B1}, CL) be the unifier used in japply with x 7→ B1. Let σ
′
j := unify (C1 ∪ {x 7→ B′

1}, CL)
be the unifier used in japply with x 7→ B′

1. We may derive:

B = validate⋆(M,

type of (letB wl1 . . .)︷ ︸︸ ︷
japply (x 7→ B1, C1, BL, CL),

type of wl2,...,wln︷ ︸︸ ︷
T2, . . . , Tn)

= validate⋆(M, σj(BL|C1 ∪ (CL \ x)), T2, . . . , Tn)~w� σM = unify(M, σj(C1 ∪ (CL \ x))) and corollary 12 (FV (σM(σj(BL))) = ∅ by lemma 2)

B = validate⋆(M, σM (σj(BL))|M , T2, . . . , Tn)~w� (⋆)

B = validate⋆
(
M, σ′

M
(
σ′
j(BL)

)∣∣M , T2, . . . , Tn

)~w� σ′
M = unify(M, σ′

j(C′
1 ∪ (CL \ x))) and corollary 12 (FV (σ′

M(σj(B
′
L))) = ∅ by lemma 2)

B = validate⋆(M, σ′
j(BL|C′

1 ∪ (CL \ x)), T2, . . . , Tn)
= validate⋆(M, japply (x 7→ B′

1, C′
1, BL, CL)︸ ︷︷ ︸

type of (letB wl′1 . . .)

, T2, . . . , Tn︸ ︷︷ ︸
type of wl2,...,wln

)

And hence the type remains B due to TP-Main.

(⋆) .We prove that σM(σj(BL)) = σM(σ′
j(BL)). Take an arbitrary free variable X ∈ FV (BL), it is

sufficient to show that: σM(σj(X)) = σM(σ′
j(X)). Because of lemma 2 we know that X ∈ FV (CL).

There are two possibilities:

– X ∈ FV (CL[x]): In this case we know that σj(CL[x]) = B1 and σ′
j(CL[x]) = B′

1. We also already
know that unify(M, C1)(B1) = Bc

1 = unify(M, C′
1)(B

′
1)

53

By construction of σM, we get σM(σj(C1)) = M
∣∣
dom(C1)

= unify(M, C1) (C1). So the effect

of σM ◦ σj on the free variables of C1 is identical to the effect of unify(M, C1). And because
FV (B1) ⊆ FV (C1) (lemma 2), the effect is also identical for B1. The same result holds with
primes: σ′

M(σ′
j(B

′
1)) = unify(M, C′

1) (B
′
1). We may thus write:

σM(σj(CL[x])) = σM(σj(B1))

= unify(M, C1) (B1)

= Bc
1

= unify(M, C′
1) (B

′
1)

= σ′
M(σ′

j(B
′
1)) = σ′

M(σ′
j(CL[x]))

If σM(σj(X)) ̸= σ′
M(σ′

j(X)) then σM(σj(CL[x])) ̸= σ′
M(σ′

j(CL[x])). Which contradicts the above,
therefore it must be the case that σM(σj(X)) = σ′

M(σ′
j(X)), our goal is true.

– X ̸∈ FV (CL[x]) ⇒ X ∈ FV (CL) \ FV (CL[x]). Therefore, it must hold that ∃k ̸= x.X ∈
FV (CL[k]). Take this k and we may use the definition of σM and σ′

M to write the next equality
of concrete types.

σM (σj(CL[k])) = M[k] = σ′
M
(
σ′
j(CL[k])

)
This can only hold if the following equality holds for any free variable of CL[k], in particular X.

σM (σj(X)) = σ′
M
(
σ′
j(X)

)
• E-LetBBuf: Looking at the rule, we know that wl must have been of the form (letB x (Dv) wlL) #
wl2 # . . . # wln. Because the program is well typed, we know that the (let . . .) must have been typed
japply (x 7→ Bc

1, ∅, BL, CL) by TP-LetB with ∅ | A ⊢p Dv : (Bc
1)|∅ and ∅ | A ⊢p wlL : BL|CL . The

full program will be typed B by:

B = validate⋆(M,

type of (letB . . . wlL)︷ ︸︸ ︷
japply (x 7→ Bc

1, ∅, BL, CL),

type of wl2,...,wln︷ ︸︸ ︷
T2, . . . , Tn)

= validate⋆(M, σ(BL|CL \ x), T2, . . . , Tn)

For σ = unify(∅ ∪ {x 7→ Bc
1}, CL) = unify(Bc

1, CL[x]) which ensures that all free variables in the type
corresponding to x in CL are replaced by the concrete values of Bc

1 (which is concrete because it
corresponds to a concrete buffer).

Let us look at (main (prog A wlL) (x 7→ Dv) : M). Lemma 10 gives us that validate(M, σ (BL|CL \ x))
has a value from the fact that validate(σ(BL|CL \ x), T2, . . . , Tn) has a value. We may also derive that
a B′ exists such that

B′ = validate((x 7→ Dv) : M, σ (BL|CL \ x) ∪ {x 7→ Bc
1})

⇕ σ(CL[x]) = Bc
1

B′ = validate((x 7→ Dv) : M, σ (BL|CL))

To wich we may apply lemma 10 again to get that validate((x 7→ Dv) : M, BL|CL) has a value. Com-
bining this with FV (BL) ⊆ FV (CL) (lemma 2) and dom(CL) ⊆ dom((x 7→ Dv) : M) (because of the
existence of the aforementioned validate), we may apply the IH to the premise of E-LetBBuf:

(main (prog A wlL) (x 7→ Dv) : M) ⇝p (main (prog A wl′L) (x 7→ Dv) : M)

. Let ∅ | A ⊢p wl′L : B′
L|CL , we get that there exist a concrete B′ such that:

validate((x 7→ Bc
1) : M, BL|CL) = validate((x 7→ Bc

1) : M, B′
L|C′

L) = B′

54

Formulated differently, we have:

unify((x 7→ Bc
1) : M, CL)(BL) = unify((x 7→ Bc

1) : M, C′
L)(B

′
L) = B′

Now, let σ′ = unify((x 7→ Bc
1) : M, C′

L)
∣∣
FV (C′

L[x])
= unify(Bc

1, C′
L[x]) and note that σ′(C′

L[x]) = Bc
1 just

as σ(CL[x]) = Bc
1. We may split up unify(M, CL) into σ (or σ′) and the remaining unifier as follows:

unify((x 7→ Bc
1) : M, CL))(BL) = unify((x 7→ Bc

1) : M, C′
L)(B

′
L) = B′

⇓ split up both sides

unify((x 7→ Bc
1) : M, σ(CL))(σ(BL)) = unify((x 7→ Bc

1) : M, σ′(C′
L))(σ

′(B′
L)) = B′

⇓ FV (σ(CL[x])) = FV (σ′(C ′
L[x])) = ∅

unify(M, σ(CL \ x))(σ(BL)) = unify(M, σ′(C′
L \ x))(σ′(B′

L)) = B′

With this equality we can now prove that the type is preserved. The final step uses corollary 12 to
introduce the unifier unify(M, σ(CL \ x)) in the first line and with the unifier unify(M, σ(C′

L \ x)) on
the fouth line:

B = validate⋆(M, σ(BL|CL \ x), T2, . . . , Tn)
corollary 12

= validate⋆(unify(M, σ(CL \ x)) (σ(BL))|M , T2, . . . , Tn)
prev result

= validate⋆(B′|M , T2, . . . , Tn)
prev result

= validate⋆(unify(M, σ′(C′
L \ x)) (σ(B′

L))|M , T2, . . . , Tn)
corollary 12

= validate⋆(σ′(B′
L|C′

L \ x), T2, . . . , Tn)
= validate⋆(M, japply (x 7→ Bc

1, ∅, B′
L, C

′
L)︸ ︷︷ ︸

type of (letB . . . wl′L)

, T2, . . . , Tn︸ ︷︷ ︸
type of wl2,...,wln

)

And hence this case is proven

• E-Other: Follows immediately from the preservation of scalar closed arithmetic expressions (see be-
low). In case of the (call . . .) for example, we had that ER matched ((bufS[num] v))#(call r (v, ·, e)).
By taking a step on the expression at the position of ·, the type remains identical. Note that the
steps taken will not use any buffer type stored in Γ, these cases are handled by E-Index and E-
IndexOutOfBounds. There are no reduction rules ↪→ e that alter (index . . .) constructs. The
changed expressions will therefore be scalar closed.

Appendix B.7. Progress en Preservation of scalar-closed arithmetic expression

Definition 6 (Scalar-closed arithmetic expression). An expression e is said to be scalar closed if all its free
variables come only from usages of (index . . .) constructs.

Lemma 15 (Progress of scalar-closed arithmetic expressions). Any scalar-closed expression e such that
Γ ⊢e e : S for some Γ with range(Γ) buffer types. Is either

• a value

• there exists an e′ such that e ↪→ e e′

• there exists an E such that e = E[(index x v)]

Proof. By induction on the typing derivation and case analysis on the last applied rule to type e. (The
typing rules can be found in Appendix A.3 on page 42)

• TE-Int and TE-Float: e is a value.

55

• TE-Var: Not possible Γ only contains buffer types, nu shaped S

• TE-BinOp and TE-BinComp: The IH gives us that either

– e1 is a value, if e2 is a value as well, one of the binary operation reduction rules applies. If not, by
IH, e2 a step can be taken for e2 and thus also for e by E-Arith. If no such step can be taken,
e2 must have an E2 such that it is E[(index x v)], in that case we can extend E2 to ensure that
e = E[(index x v)].

– there exists an e′1 such that e1 ↪→ e e′1, in this case E-Arith applies, and a step can be taken.

– there exists an E1 such that e1 = E1[(index x v)], in this case, we may extend E1 to build an
E such that e = E[(index x v)].

• TE-Fst and TE-Snd: the IH gives us that either

– e1 is a value, which must have been of the form (tuple v1 v2) (by TE-Tuple), in which case
E − Fst or E − Snd applies.

– there exists an e′1 such that e1 ↪→ e e′1, in this case E-Arith applies, and a step can be taken.

– there exists an E1 such that e1 = E1[(index x v)], in this case, we may extend E1 to build an
E such that e = E[(index x v)].

• TE-Tuple: The IH gives us that either

– e1 is a value, if e2 is a value as well, the tuple is a value. If not, by IH, e2 a step can be taken for
e2 and thus also for e by E-Arith. If no such step can be taken, e2 must have an E2 such that
it is E[(index x v)], in that case we can extend E2 to ensure that e = E[(index x v)].

– there exists an e′1 such that e1 ↪→ e e′1, in this case E-Arith applies, and a step can be taken.

– there exists an E1 such that e1 = E1[(index x v)], in this case, we may extend E1 to build an
E such that e = E[(index x v)].

• TE-If: The IH gives us that either

– ec is a value, which must be numeric by TE-Int. If this number is 0, E-If0 applies, otherwise
E-If applies.

– there exists an e′c such that ec ↪→ e e′c, in this case E-Arith applies, and a step can be taken.

– there exists an Ec such that ec = Ec[(index x v)], in this case, we may extend Ec to build an
E such that e = E[(index x v)].

• TE-Let: The IH gives us that either

– ev is a value and E-Let applies

– there exists an e′1 such that ev ↪→ e e′v, in this case E-Arith applies, and a step can be taken.

– there exists an Ev such that ev = Ev[(index x v)], in this case, we may extend Ev to build an
E such that e = E[(index x v)].

Corollary 16. Any closed expression e such that ∅ ⊢e e : S is either a value or there exists an e′ such that
e ↪→ e e′

Proof. Such expression cannot contain a (index x e) construct because x must be in the environment (Γ)
for such an expression to be well-typed.

56

Lemma 17 (Preservation of arithmetic expressions). If Γ ⊢e e : S and e ↪→ e e′, then Γ ⊢e e′ : S for any Γ.

Proof. By structural induction on e and case analysis of the reduction rules. Only two rules deserve special
attention here, the other rules are straightforward. The preservation of E-Arith follows from the preser-
vation of the reduction in the premise. For E-Let, we notice that the body of the let was initially typed
under an extended environment that had a binding for x to S1. TE-Let also gives us that the value of
the binding is of type S1. All occurrences of x replaced in e were previously typed as S1 by TE-Var. The
substitution changes this part of the typing derivation into an expression of the same type. The resulting
type hence remains unchanged.

Appendix B.8. Progress of Work Lists

Proof of lemma 4. To show that (main (prog A Ewl[wl]) M) ⇝p (main (prog A Ewl[wl
′]) M) for

any Ewl, it suffices (and is sufficient) to show that this reduction stems from a rule of the from Ew [wl] ⇝p Ew [wl′]
with Ew [·] = (main (prog A Ewl[·]) M). Luckily, all our reduction rules are of this form.

The proof will proceed by well founded induction on the derivation of ∅ | A ⊢p wl : BT |CT . We do case
analysis on the last applied rule in the derivation of ∅ | A ⊢p wl : BT |CT .

TP-Retrive (Γ | A ⊢p (retrive x1 . . . xn) : (Bx1
, . . . , Bxn

)
∣∣{x′

1 7→ Bx′
1
, . . . , x′

m 7→ Bx′
m
}) with {x′

1, . . . , x
′
m} =⋃m

i=1

{
xmin{j | xj=xi}

}
Because we know that ∃B.B = validate

(
MB , (Bx1 , . . . , Bxn)

∣∣{x1 7→ Bx′
1
, . . . , xm 7→ Bx′

m
}
)
, MB must

have the keys x′
1, . . . , x

′
m in its domain (by TP-Validate). These keys are identical to the names

x1, . . . , xn with duplicates removed. By definition ME has the same domain, therefore E-Retrive
can be applied.

TP-LetB (Γ | A ⊢p (letB x wl1 wlL) : BT |CT with BT |CT = japply (x 7→ B1, C1, BL, CL) if Γ | A ⊢p wl1 : (B1)|C1
and Γ | A ⊢p wlL : BL|CL)
There are three possibilities:

• wl1 is not a value: FromTT-JApply we know that CT = σ(C1∪(CL\x)) for some σ. Combing TT-
JApply with our premise gives us ∃B.B = validate(M, BT |CT) = validate (M, σ (BL|C1 ∪ (CL \ x))).
This means that

– there is a substitution that can be applied to σ(C1) to make it equal to M
∣∣
dom(C1)

. Therefore,

there also exists a σ′ = unify(M, C1), and

– dom(C1 ∪ (CL \ x)) ⊆ dom(M) and thus also dom(C1) ⊆ dom(M).

– By lemma 2 we know that FV (B1) ⊆ FV (C1)

The above three points are the premises of TP-Validate for the type of wl1: we may derive
that there exists a B′ = validate(M, B1|C1). We can now use the IH to derive that wl′1 exists
such that Ew [wl1] ⇝p Ew [wl′1]. This is the premise of E-LetB1, and hence the step E-LetB1
can be applied to our (let . . .).

• wl1 is a value, wlL is not a value: The canonical form of a value of type (B1) is ((bufB1
v))

and we know form TP-Buf that its type is B1|∅ . Combing this with TT-JApply, we get that
CT = σ(∅ ∪ (CL \ x)) = σ(CL \ x) and σ = unify(∅ ∪ {x 7→ B1}, CL). Therefore we have that
σ(CL[x]) = B1 (if x ∈ dom(CL)).

– Because ∃B.B = validate(M, BT |CT) = validate (M, σ (BL|CL \ x)) there is a substitution
that can be applied to σ(CL \ x) to make it M

∣∣
CL\x. Because σ(CL[x]) is the concrete type

B1 we may extend M with the value ((bufB1 v)) of type B1 for x and obtain that there
also exists a σ′ = unify(x 7→ ((bufB1 v)) : M, CL). If x ̸∈ CL, this still holds because TM-
UnifyM only considers keys in the intersection of the domains.

57

– dom(CL \ x) ⊆ dom(M) so dom(CL) ⊆ dom(x 7→ ((bufB1 v)) : M)

– By lemma 2 we know that FV (BL) ⊆ FV (CL)

The above three points are the premises of TP-Validate for the type of wlL with the store (x 7→
((bufBv

1
v)) : M): we may derive that there exists aB′ = validate

(
(x 7→ ((bufBv

1
v)) : M), BL|CL

)
.

We can now use the IH to derive that wl′L exists such that Ew [wlL] ⇝p Ew [wl′L] with Ew [·] =
(main (prog A Ewl[·]) (x 7→ ((bufBv

1
v)) : M)). Therefore, E-LetBBuf applies.

• wl1 and wlL are values: E-LetBEnd applies. Note that TP-LetB gives us that the type of wl1
must be a single buffer.

TP-Buf the work list must be of the form ((buf e)). If all the elements of the all the buffers are values,
wl is a value. If not, take the first such non-value and call it e. We have that wl = Ewl[ER[e]]. From
TP-Buf and TM-Buffer we get that ⊢e e : S for some shape S. From corollary 16 we now get that
there must be a e′ such that e ↪→ e e′. This is the premise of E-Other so we may conclude that this
rule (Ew [ER[e]] ⇝p Ew [ER[e

′]]) can be applied to wl.

TT-BufferShpr Either the D in (shpr* D Ms) is a value (E-EndShpr applies) or it is not. In the that
case, E-Other applies because the D only consists of scalar-closed expression (TT-BufferShpr and
the case above)

TP-List (Γ | A ⊢p wl1 # w2 : BT |CT with BT |CT = join (B1|C1 , T2) if Γ | A ⊢p wl1 : B1|C1 and
Γ | A ⊢p w2 : T2|∅)
There are two possibilities:

• wl1 is a value (typed by TP-Buf) and therefore has the form (buf v), also written as (Dv
1 , . . . , D

v
m).

TP-Call , we have the work list (bufS v) #(call r va) with va values (if not values E-Other
applies due to TP-Call and corollary 16). We know the number of arguments passed to the
call |xa| = |va| and that a definition is in A due to TP-Call, therefore E-Call applies.

TT-Mapr we have the work list ((bufS[num] v)) # (mapr (S1[n]) _ (S2[n]) xi xo e). We are
certain that the first item of the list is a single buffer because join succeeds in TP-List
and ensures the type of the first element of the list unifies with a list of length one (from
TT-Mapr). Hence E-CallMapr applies.

TT-Redr we have the work list ((bufS[num] v)) # (redr (Sd[n]) _ (Sa[1]) xd xa e0 eb). We
know that there is just one buffer by the argument above for TT-Mapr. If e0 is not a value,
we know it a step can be taken with E-Other (TT-Redr and corollary 16). If it is a value,
there are two options: if |v| = 0, E-CallRedr0 applies else (|v| > 0) E-CallRedr applies.

TT-Shpr , we have the work list
(Dv

1 , . . . , D
v
m) # (shpr (S1[e1], . . . , Sm[em]) _ (So[eo]) xi (xv1 . . . xvm) e). From the suc-

cessful application of TT-Shpr we derive that the (shpr . . .) construct is typed (S1[e1], . . . Sm[em]) _ So[eo]|∅ .
The successful application of join in TP-List tells us that there is a σ such that σ =
unify((B1, . . . , Bm), (S1[e1], . . . Sm[em])) with ∀i. ⊢ Dv

i ;Bi. From this, we know that the
correct number of buffers are supplied and that Ms is well-defined. Since all buffers Dv

i have
a concrete type, the unifier σ will replace all free variables in So[e0] by concrete values, as a
concequence k = σ(eo) will be a concrete integral value and k − 1 exists.

• wl1 is not a value. We know that ∃B.B = validate(M, BT |CT) = validate(M, σ(B3)|σ(C1)) for

someB3 and some σ created inTM-Join. FromTP-Validate, we now know that unify
(
M
∣∣
dom(C1)

, σ(C1)
)

has a value. Therefore, there must also exist a σ′ = unify
(
M
∣∣
dom(C1)

, C1
)
. We also know that

dom(CT) = dom(σ(C1)) = dom(C1) ⊆ dom(M) and by lemma 2 that FV (B1) ⊆ FV (C1). The
previous three facts allow us to state that ∃B′.B′ = validate(M, B1|C1). So, we may use the IH

58

and obtain that there exist a wl′1 such that
(main (prog A Ewl[wl1]) M) ⇝p (main (prog A Ewl[wl

′
1]) M) for any Ewl. By substitut-

ing Ewl[·] for Ewl[· # w2] we get
(main (prog A Ewl[wl1 # w2]) M) ⇝p (main (prog A Ewl[wl

′
1 # w2]) M) for any Ewl, our

goal.

Appendix C. Omitted listings

1 let deg2rad = 0.01745329252
2 let from = positions._1 in
3 let to = positions._2 in
4 let dlon = (to._1 - from._1)* deg2rad in
5 let flat = from._2*deg2rad in
6 let tlat = to._2*deg2rad
7 let dz = sin(to._2) - sin(from._2) in
8 let dx = cos(dlon) * cos(to._2) - cos(to._2) in
9 let dy = sin(dlon) * cos(to._2) in

10 asin(sqrt(dx*dx+dy*dy+dz*dz)/2)*2*6371

Listing 11: Haversine computation

Appendix D. Extensions

We added some extensions to our language to ease programming further. They are syntactical sugar for
constructs in the core language as defined in the main body of this paper.

Appendix D.1. Iterate

To repeatedly apply an identical transformation we provide the (iterate x e wl) construct also written
as “for x in 0..e wl” to ease presentation. It allows to repeat a program wl for v times, with an iteration
variable x which will run from 0 to v − 1 with v the concrete value e reduces to.

The output of the previous iteration will be the input of the next iteration. We require that the output of
an (iterate . . .) construct has the same buffer type as its input. In other words: wl must have the type
(B1[n]) _ B1[n]

This construct can be added as a form of syntactic sugar, which simply repeats the content of the con-
struct the appropriate number of times. This rule used to be in the core semantics and is included in our
implementation. The typing rule used for this construct can be found below.

First we add some constructs to the semantic entities.

t ::= . . . | (iterate x e wl)

ER ::= . . . | Dv # (iterate x E wl)

We must then also describe how substitution works for out new construct.

(iterate x e wl)[x/v] = (iterate x e[x/v] wl[x/v])

Now we can write the typing and evaluation rules.

59

E-Iterate
∀0 ≤ i < max(0, v).wli = wla[x/i]

Ew [(Dv) # (iterate x v wla)] ⇝p Ew

[
(Dv) # wl0 # . . . # wlmax(0,v)−1

]
TP-Iterate
Γ ⊢e e : int x 7→ int : Γ | A ⊢p wl : B1 _ B1|∅

Γ | A ⊢p (iterate x e wl) : B1 _ B1|∅

Adding these rules does not violate the safety. The required additions to the proofs are shown below.

• Preservation: E-Iterate is a rule of the form Ew [wl1]⇝p Ew [wl′1] where wl1 = (Dv)#(iterate x v wla)
and wl′1 = (Dv) # wla[x/0] # . . . # wla[x/(v − 1)] in which wla[. . .] occurs max(0, v) times. IT suffices to
prove that B1|C1 = B1|C1 with B1|C1 the type of wl1 and B′

1|C′
1 the type of wl′1.

The (iterate . . .) construct must have been typed byTP-Iterate as: Γ | A ⊢p (iterate x v wla) : Bi _ Bi|∅ .
The premises of this rule gives us that Γ ⊢e v : int and thus that v and x 7→ int : Γ | A ⊢p wla : Bi _ Bi|∅ ,
so with the lemma 18 we get that Γ | A ⊢p wla[x/num] : Bi _ Bi|∅ for any number num.

Let Bc
d|∅ be the (concrete) type of Dv and let σ = unify(Bc

d, B1), it holds that B
c
d = σ(Bc

d) = σ(B1).

Now have that the type of wl1 is B1|C1 = join (Bc
d|∅ , Bi _ Bi) = Bc

d|∅ (last equality by TM-Join).

The type B′
1|C′

1 of wl′1, the work list after applying the rule, depends on v, the number of iterations.
We prove that B′

1|C′
1 = B1|C1 = Bc

d|∅ for any v by induction.

IB If v = 0, wl′1 simply becomes (Dv) and the type remains Bc
d|∅ = B1|C1

IH For any v < v1.join
⋆(Bc

d|∅ ,

v times︷ ︸︸ ︷
B1 _ B1, . . . , B1 _ B1) = Bc

d|∅ = B1|C1
IS For v1 − 1 iterations we had the following:

join⋆(Bc
d|∅ ,

v1−1 times︷ ︸︸ ︷
B1 _ B1, . . . , B1 _ B1) = Bc

d|∅

We may replace the first Bc
d|∅ by join (Bc

d|∅ , Bi _ Bi) because
join (Bc

d|∅ , Bi _ Bi) = Bc
d|∅ . And we get the following.

join⋆(join (Bc
d|∅ , Bi _ Bi) ,

v1−1 times︷ ︸︸ ︷
B1 _ B1, . . . , B1 _ B1) = Bc

d|∅

By definition of join⋆() we now get:

join⋆(Bc
d|∅ ,

v1 times︷ ︸︸ ︷
B1 _ B1, . . . , B1 _ B1) = Bc

d|∅

We conclude that B1|C1 = B′
1|C′

1 for any number v, and have hence proven preservation for this case.

• Progress For TP-Iterate, we have the work list (buf v) # (iterate x vc wla) typed by TM-
Iterate with vc a value, to which E-Iterate applies. Because the (iterate . . .) construct is typed
T2 = (B2) _ (B2), we know that (buf v) only contains one buffer. If it were to contain multiple
buffers join (B1|C1 , (B2) _ (B2)) would not succeed.

If vc is not a value, E-Other applies (corollary 16).

We also need a substitution lemma for work items in this case:

Lemma 18. For any transformation t, well-typed under Γ, and for any value v such that Γ ⊢e t[x/v] : Γ[x]
it holds that if Γ | ∅ ⊢p t : T |∅ thenΓ | ∅ ⊢p t[x/v] : T |∅ (if the same fresh variable names are chosen)

And the

60

1 abstraction veclen_part1(baseX:int ,baseY:int): (A[n],A[n]) -> A[n]{
2 shaper(i:int , x:A[n], y:A[n]): (A × A)[n]{
3 tuple(x[i],y[i])
4 }
5 }
6 abstraction veclen_part2(baseX:int ,baseY:int): (float ,float)[n] -> float[n]{
7 mapper(i: int , d: (float × float)): float{
8 sqrt((d._1-baseX)^2 + (d._2 -baseY)^2)
9 }

10 }
11

12 (retrive x newy) # (call veclen_part1 0 0) # (call veclen_part2 0 0)

Listing 12: Desugarred version of lising listing 6

Appendix D.2. Abstractions with multiple transformations

The typing rules, as they are presented in section 3 do not allow abstractions to have more than one
transformation. This is because the TP-List rule does not allow transformations to be composed. The
defined abstractions are syntactic sugar for defining multiple abstractions.

To use abstractions with multiple transformations in our original semantics, they need to be desugared
into multiple abstractions. A call to such an abstraction desugars to a sequence of calls to the split up
abstractions. The program in listing listing 6 (page 6) for example is desugared to listing 12.

During the development Gaiwan we nevertheless formalized the typing rules needed to allow abstractions
with multiple transformations. The required rules are shown below. These rules are used in our imple-
mentation of the type system. Note how TP-ListTrans and TM-JoinTrans do not need to deal with
constraints as transformation types do not have constraints.

TP-ListTrans
Γ | A ⊢p wl : T1|∅ Γ | A ⊢p w : T2|∅ T |∅ = join (T1, T2)

Γ | A ⊢p wl # w : T |∅

TM-JoinTrans
σ = unify((B2), (B3)) FV (B2) ⊆ FV (B1) FV (B4) ⊆ FV (B3)

σ(T)|∅ = join ((B1 _ (B2)), ((B3) _ (B4))

We chose not to include these rules in our core semantics because they further complicate the proofs and
do not simplify presentation.

Appendix E. Benchmark results

The full benchmark results are shown below. We included an additional column showing the execution
time of a sequential implementation of Bitonic Sort executed on an Intel(R) Core(TM) i7-7820HQ CPU @
2.90GHz. Missing values rendered as 0.00.

61

log2 n OpenCl (ms) Gaiwan (ms) Gaiwan
OpenCL Gaiwan Full (ms) Gaiwan Full

OpenCL CPU (ms)

13 0.76 34,000 44,533.0 87,000 1.14 · 105 1.49
14 0.79 38,000 47,823.0 94,000 1.18 · 105 3.26
15 0.84 48,000 56,960.0 1.1 · 105 1.31 · 105 7.15
16 0.91 59,000 64,493.0 1.29 · 105 1.41 · 105 15.34
17 1.01 78,000 77,124.6 1.56 · 105 1.54 · 105 33.84
18 1.21 97,000 79,953.5 1.76 · 105 1.45 · 105 73.06
19 1.48 1.13 · 105 76,424.0 1.99 · 105 1.35 · 105 159.95
20 2.08 1.33 · 105 64,063.0 2.24 · 105 1.08 · 105 347.68
21 3.29 1.53 · 105 46,558.0 2.53 · 105 76,988.00 770.01
22 5.80 1.82 · 105 31,372.0 2.9 · 105 49,988.00 1,685.03
23 15.18 2.1 · 105 13,836.4 3.27 · 105 21,545.10 3,755.78
24 32.16 2.61 · 105 8,116.5 3.82 · 105 11,879.30 8,107.69
25 65.86 2.67 · 105 4,054.1 4·105 6,073.60 17,482.61
26 137.10 3.39 · 105 2,472.7 4.83 · 105 3,523.01 0.00
27 289.15 3.87 · 105 1,338.4 5.23 · 105 1,808.76 0.00
28 609.41 4.31 · 105 707.2 5.84 · 105 958.30 0.00
29 1,287.92 4.78 · 105 371.1 6.44 · 105 500.03 0.00
30 2,721.56 5.9 · 105 216.8 7.89 · 105 289.91 0.00

Appendix F. Idris Code Sample

A sketch of a part of an Idris implementation of size-polymorphic types

joinSizes : Nat Nat Nat Nat Nat Nat Nat -> (Nat, Nat)

joinSizes fa fb a1 b1 a2 b2 ta tb = ?impl

join : (Buffer fa fb -> Buffer a1 b1)

-> (Buffer a2 b2 -> Buffer ta tb)

-> {auto p : joinSizes fa fb a1 b1 a2 b2 ta tb = (fan, fbn, tan, tbn) }

-> (Buffer fan fbn -> Buffer tan tbn)

join = ?impl

62

	Introduction
	Gaiwan Programming Constructs
	Buffers
	Transformations
	Mappers: Transforming Values
	Reduce: Combining Buffer Elements
	Shapers: Data Reshaping Transformations
	Abstraction

	Coordination Plan
	Retrive: Source of Data
	Literal Buffers
	Call: Applying Transformations
	LetB: Naming Data

	Summary

	Size polymorphic Type System
	Semantic Entities
	Transformations
	Coordination Plan
	Arithmetic Expressions
	Instantiated Programs

	Unification
	Shapes
	Sizes
	Example

	Evaluation rules
	Arithmetic Expressions
	Transformations
	Coordination Plan

	Soundness
	Definitions
	Validation Lemma
	Progress
	Preservation
	Soundness
	Practical Implications

	Evaluator
	Static Analyzer
	Intermediate Code Generator
	Equational Reasoning
	Simplification and Common Sub-Expression Lifting

	Executor

	Evaluation
	Usage Example: Analyzing GPS data
	Usage Example: Dot Product
	Performance Evaluation: Bitonic Sort

	Related Work
	Future Work
	Conclusion
	Omitted rules
	Meta functions
	Rules for Buffers
	Typing rules for expressions |-E
	Reduction rules for expressions ->E
	Explicit Definition of Substitution on Expressions
	Application of Unifiers

	Omitted lemmas and proofs
	Join Preserves Containment of Free Variables
	Constructed types have contained Free Variables
	The output of validate is concrete
	Proofs and Corollaries of the Validation Lemma
	Substitution Lemmas
	Preservation
	Progress en Preservation of scalar-closed arithmetic expression
	Progress of Work Lists

	Omitted listings
	Extensions
	Iterate
	Abstractions with multiple transformations

	Benchmark results
	Idris Code Sample

